• Title/Summary/Keyword: Mixing characteristics

Search Result 2,870, Processing Time 0.034 seconds

Characteristics of Flame Stabilization of the LFG Mixing Gas (LFG 혼합연료의 화염 안정화 특성)

  • Lee, Chang-Eon;Hwang, Cheol-Hong;Kim, Seon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.328-335
    • /
    • 2002
  • In this study, experiments were performed to investigate the characteristics of flame stabilization of the LFG mixing gas. LFG has merely half heating value compared with liquified natural gas but can be greatly utilized as a commercial fuel. In order to use LFG in practical combustors, Webbe Index and heating value of LFG mixing gas were adjusted by mixing LPG with LFG. The comparisons were conducted between CH$_4$and LFG mixing gas for searching the region of flame stabilization based upon the flame blowout at maximum fuel stream velocity. As a result, the flame stability of LFG mixing gas was not improved with that of CH$_4$in non-swirl and weak swirl diffusion flame. However, LFG mixing gas had wide flame stabilization region rather than CH$_4$with increasing ambient flow rate in strong swirl. It was also found that flame stability was affected by included quantity of inert gas such as CO$_2$in the weak swirl but by heating value of fuel in strong swirl.

The Effect of CVD Reaction Variable on SnO2 Powder Characteristics

  • Kim, Kyoo-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.235-239
    • /
    • 1998
  • Ultrafine $SnO_2$ powder was prepared by the diffusion mixing gas-phase reaction of $SnCl_4$(g) and water vapor. The effects of reaction variables, such as the chloride partial pressure, the reaction temperature, and the residence time is the reactor, on the powder size were examined systematically. Calculated concentration and distribution of chemical species, using the Burke-Schumann diffusion mixing model, were compared with the experimetal results. The effects of the reaction variables on the powder size were also discussed qualitatively.

  • PDF

Change of Spray Characteristics with Mixing Port Length of Y-Jet Atomizers (Y-Jet 노즐에서의 혼합관 길이변화에 따른 분무특성 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3021-3031
    • /
    • 1994
  • Experiments have been performed to find out the effect of the mixing port length of Y-jet atomizers on the spray performance, using air and water as the test fluids. Water and air flow rates and drop sizes were measured at each injection pressure condition for different mixing port length. The air flow rate was almost unaffected by the change of the mixing port length. However, the water flow rate was relatively susceptible to the change of the mixing port length. The mixing point pressure was very much influenced by the mixing port length. Variations of spatial distribution of Sauter Mean Diameter (SMD, $D_{32}$) and the cross-section-averaged SMD ($D_{32,m}$) with different mixing port length and air/water mass flow rate ratio were examined. Generally, when the mixing port length was reduced, the mean drop size decreased and became spatially even.

An Experimental Study of Temperature Profiles in Mixing Zone of AHU with an Air Mixer (에어믹서가 설치된 공조기 혼합실 내의 온도분포에 관한 실험적 연구)

  • Pak, Kwon-Jong;Lee, Sek-Jun;Jang, Young-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.999-1006
    • /
    • 2006
  • A study of temperature profiles in mixing zone of AHU (air handling unit) can contribute greatly to enhance performance of AHU system, so the study on the temperature distribution between RA (return air) and OA (outdoor air) is important to analyze the mixing characteristics in a mixing zone of AHU. Accordingly, the temperature profiles during RA (return air) and OA (outdoor air) supply process into mixing zone of AHU with an air mixer are studied experimentally. The effect of air mixer, OA temperature and RA/OA flow rate are studied in detail. In this study, the results show that the mixing efficiency is all high for installed the air mixer. The more OA temperature increase and OA flow rate decrease, the more mixing efficiency is high.

Characteristics of Flame Structure and $NO_X$ Emission in a Dump Gas Turbine as Fuel-Air Mixing Degrees (희박 예혼합 정도에 따른 모형 덤프 가스터빈 연소기의 화염 구조와 $NO_X$배출 특성)

  • Ryu, Hye-Yeon;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3452-3457
    • /
    • 2007
  • Experiments were carried out in an atmopheric pressure, lab-scale gas turbine combustor to see the effect of partial premixing on unstable flame structure and $NO_X$ emission characteristics. The swirl angle is 45 deg., fuel-air mixing degrees were varied 0, 50, and 100% respectively at equivalence ration ranging from 0.53 to 0.79. The evaluation of phased-locked OH chemiluminescence images were acquired with an ICCD. $NO_X$ emission characteristics were also investigated at each experimental condition. The effect of the fuel-air mixing degree on the flame structure was obtained from phase-locked $OH^*$ images. And it was obtained from local heat release characteristics that the information about the region which the combustion instability was amplified or damped. It also could be confirmed that ${\sigma}$ has greatly influence on $NO_X $emission characteristics at lean regimes. It would be expected that it could provide invaluable data for understanding the mechanism of combustion instability

  • PDF

A Study on the Spray Characteristics of Flash Boiling Using Two Component Mixing Fuel (2성분 혼합연료를 이용한 감압비등 분무특성에 관한 연구)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.451-458
    • /
    • 2009
  • This experimental study was conducted to investigate macroscopic characteristics of the flash boiling spray with tow component mixing fuel. Homogeneous Charge Compression Ignition (HCCI) is a newer combustion method for internal combustion engines to reduce nitrogen oxide and particulate matter simultaneously. But it is difficult to put this combustion method to practical use in an engine because of such problems as instability of combustion in low load operating conditions and knocking in high load operating conditions. In HCCI, combustion characteristics and exhaust emissions depend on conditions of air/fuel mixture and chemical reactions of fuel molecules. The fuel design approach is achieved by mixing two components which differ in properties such as density, viscosity, volatility, ignitability and so on. We plan to apply the fuel design approach to HCCI combustion generated in a real engine, and examine the possibility of mixture formation control using the flash boiling spray. Spray characteristics of two component fuel with a flash boiling phenomenon was investigated using Shlieren and Mie scattering photography. Test fuel was injected into a constant volume vessel at ambient conditions imitated injection timing BTDC of a real engine. As a result, it was found that a flash boiling phenomenon greatly changed spray structure, especially in the conditions of lower temperature and density. Therefore, availability of mixture formation control using flash boiling spray was suggested.

Study on the Gas-Liquid Mixing Characteristics in Reactor System Using Ejector

  • Jin, Zhen-Hua;Utomo, Tony;Chung, Han-Shik;Jeong, Hyo-Min;Shin, You-Sik;Lee, Sang-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2708-2713
    • /
    • 2007
  • The aim of this paper is further studies to achieve deeper understanding in this field. First investigate the influence of operating conditions and design parameters on the hydrodynamics and the mass transfer properties of a loop reactor. This paper provides a literature review on the ejectors applications in the mixing system. A number of studies are grouped and discussed in several topics such as the background, theory of ejector, mixing characteristics, optimization of the system. Since the high efficiencies reactor using ejector widely used in gas-liquid system, especially in a number of chemical and biochemical processes. This is due to their high efficiency in gas dispersion resulting in high mass transfer rate and low power requirements. Thus ejector has been applied to the mixing system. An investigation on hydrodynamics and mass transfer characteristics of gas-liquid ejector has been carried out using three-dimensional CFD modeling.

  • PDF

Spray characteristics on mixing region scale of twin fluid atomizer (이류체 분사노즐의 혼합영역 형상에 따른 분무특성)

  • 김병문;김혁주;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2147-2159
    • /
    • 1991
  • The effects of principal dimensions of internal mixing twin-fluid atomized and operating conditions on the atomizing characteristics are experimentally investigated. The tests are conducted over the wide range of air/liquid ratio to predict influences of the diameter and length of nozzle, contacting angle between air and liquid in the mixing chamber, and air orifice diameter on the mean drop size(SMD), spray angle, distribution of drop size, and spray dispersion, And also, initial distribution of liquid column by air stream within the mixing chamber are observed through the transparent nozzles. A He-Ne laser particle sizer(MALVERN Model 2604) was used to measure the Sauter.s mean diameter( $D_{321}$) and droplet sizes distribution. In this experiment the air/liquid ratio, mixing length and nozzle diameter have a great influence on SMD, spray angle, droplet sizes distribution and spray dispersion.

Mixing Zone Analysis on Outfall Plume considering Influent Temperature Variation (수온 변화의 영향을 고려한 방류관 플룸의 혼합역 분석)

  • 김지연;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.247-253
    • /
    • 2004
  • As a large scale port development in coastal waters proceeds step by step and populations in the vicinity of port are getting increased, the issue on "how to dispose the treated municipal water and wastewater in harbor" brings peoples′ concern. The submarine outfall system discharges the primary or secondary treated effluent at the coastline or in deep water, or between these two. The effluent, which has a density similar to that of fresh water, rises to the sea surface forming plume or jet, together with entraining the surrounding sea water and becomes very dilute. We intended in this paper to investigate the impact on dilution of effluent and the behavior of flume under the conditions of the seasonal and spatial temperature variations, which have not been noticeable in designing effective marine outfall system. To predict and analyze the behaviour and dilution characteristics of plume not just with the effluent temperature, but also with the seasonal variation of temperature of surround water and tidal changes, CORMIX(Cornell Mixing Zone Expert System)-GI have been applied. The results should be used with caution in evaluation the mixing zone characteristics of discharged water. We hope to help for the effective operation of outfall system, probable outfall design, protection of water quality, and warm water discharges from a power plant, etc.

  • PDF

RANS-LES Simulations of Scalar Mixing in Recessed Coaxial Injectors (RANS 및 LES를 이용한 리세스가 있는 동축분사기의 유동혼합에 대한 수치해석)

  • Park, Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • The turbulent flow characteristics in a coaxial injector were investigated by the nonlinear $k-{\varepsilon}-f_{\mu}$ model of Park et al.[1] and large eddy simulation (LES). In order to analyze the geometric effects on the scalar mixing for nonreacting variable-density flows, several recessed lengths and momentum flux ratios are selected at a constant Reynolds number. The nonlinear $k-{\varepsilon}-f_{\mu}$�� model proposed the meaningful characteristics for various momentum flux ratios and recess lengths. The LES results showed the changes of small-scale structures by the recess. When the inner jet was recessed, the development of turbulent kinetic energy became faster than that of non-recessed case. Also, the mixing characteristics were mainly influenced by the variation of shear rates, but the local mixing was changed by the adoption of recess.