• Title/Summary/Keyword: Mixing Intensity

Search Result 309, Processing Time 0.032 seconds

Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem (대형 인공호에서 양이온, 음이온 및 전기전도도의 연변화에 대한 수리수문학적 중요성)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.1-8
    • /
    • 2001
  • During April 1993 to November 1994, cations, anions, and conductivity were analyzed to examine how summer monsoon influences the ionic content of Taechung Reservoir, Korea. Interannual variability of ionic content reflected hydrological characteristics between the two years(high-flood year in 1993 vs. draught year in 1994). Cations, anions and conductivity were lowest during peak inflow in 1993 and highest during a drought in 1994. Floods in 1993 markedly decreased total salinity as a result of reduced Ca$^{2+}$ and HCO$_{3}\;^{-}$ and produced extreme spatial heterogeneity (i.e., longitudinal, vertical, and horizontal variation) in ionic concentrations. The dominant process modifying the longitudinal (the headwaters-to-downlake) and vertical (top-to-bottom) patterns in salinity was an interflow current during the 1993 monsoon. The interflow water plunged near a 27${\sim}$37 km-location (from the dam) of the mid-lake and passed through the 10${\sim}$30m stratum of the reservoir, resulting in an isolation of epilimnetic high conductivity water (>100 ${\mu}$S/cm) from advected river water with low conductivity (65${\sim}$75 ${\mu}$S/cm), During postmonsoon 1993, the factors regulating salinity differed spatially; salinity of downlake markedly declined as a result of dilution through the mixing of lake water with river water, whereas in the headwaters it increased due to enhanced CaCO$_{3}$ (originated from limestone/metamorphic rock) of groundwaters entering the reservoir. This result suggests an importance of the basin geology on ion compositions with hydrological characteristics. In 1994, salinity was markedly greater (p<0.001) relative to 1993 and ionic dilution did not occur during the monsoon due to reduced inflow. Overall data suggest that the primary factor influencing seasonal ionic concentrations and compositions in this system is the dilution process depending on the intensity of monsoon rainfall.

  • PDF

A study on the optimum ratio of the ingredients in preparation of black sesame gruels (흑임자죽 재료배합비의 최적화 연구)

  • 박정리;김종군;김정미
    • Korean journal of food and cookery science
    • /
    • v.19 no.6
    • /
    • pp.685-693
    • /
    • 2003
  • The aim of this study was to develop a standardized recipe for black sesame gruel that has been preferred for generations as a nutritional food. The method focused on optimizing the mixing ratio of the components to improve the quality of the black sesame gruels that modem consumers would like. The results are summarized as follows: The more black sesame added to the gruel, the lower its brightness was, but the redness and yellowness was higher. The amount of black sesame made a significant difference in the viscosity, color, nutty taste, bitterness, appearance and overall preference. It was highest in the overall preference when the amount of black sesame was added 33g(40% of rice weight basis). Different types of rice were added to the black sesame gruel, and it was observed that the color value of the gruel was high in its brightness, redness and yellowness when 50g(60%) of glutinous rice was added to it. The black sesame gruel was most preferred when 50g of non-glutinous rice was added. The redness value was high when 15g(18%) of non-glutinous rice flour was added. The yellowness value was high when 25g(30%) of non-glutinous rice flour was added. This observation showed significant differences in the viscosity, color, nutty taste, bitterness, appearance and overall preference. In particular, the black sesame gruel was most preferred when 50g of non-glutinous rice flour was added. The addition of 7g(9%) of salt to the black sesame gruel showed the highest brightness. The redness and yellowness was the highest when 5g(6%) of salt was added. This observation showed a significant difference in the viscosity, color, nutty taste, bitterness, appearance and overall preference. The highest preference was observed when 2.5g(3%) of salt was added. Adding more materials increased the viscosity of the black sesame gruel. With increasing temperature, the viscosity became lower, and vice versa. The intensity of sweetness and spreadability was found to be proportional to the amount of additive material. In conclusion, the optimum recipe for black sesame gruels was obtained 33g(40%) of black sesame, 50g(60%) of glutinous rice (flour), 2.5g of salt, and 500$m\ell$ of water.

Discrimination Analysis of Production Year of Rice and Brown Rice based on Phospholipids (인지질을 이용한 쌀과 현미의 생산연도 판별 분석)

  • Hong, Jee-Hwa;Ahn, Jongsung;Kim, Yong-Kyoung;Choi, Kyung-Hu;Lee, Min-Hui;Park, Young-Jun;Kim, Hyun-Tae;Lee, Jae-Hwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.2
    • /
    • pp.105-112
    • /
    • 2017
  • The mixing of rice and brown rice produced in different years is banned in Korea by the grain management act. However, there has been no reported method for discriminating the production year of rice. The objective of this study was to develop a method for discriminating the production year of rice and brown rice based on their phospholipids content. One hundred rice samples and 130 brown rice samples produced between 2012 and 2015 were collected. Twelve phosphatidylcholine components were analyzed by liquid chromatography-tandem mass spectrometry. Phosphatidylcholine was used as an internal standard to calculate the peak intensity of the samples. A statistical analysis of the results showed that the centroid distance between the stale and new rice was 4.16 and the classification ratio was 97%. To verify the calculated discriminant, 61 and 40 rice samples were collected. The accuracy of discrimination was 82% by primary verification and 80% by secondary verification. The statistical analysis of brown rice showed that the centroid distance between the stale and new brown rice was 3.14 and the classification ratio was 96%. To verify the calculated discriminant, 10 samples of new rice and 30 samples of stale rice were collected and the accuracy of discrimination was 93%. The accuracy of discrimination for rice stored at room temperature was 57.9-92.1% and that for rice stored at a low temperature was 86.8-94.7%, depending on the storage period. For brown rice, the detection accuracy was 94.7-100% at room temperature and 92.1-100% at a low temperature, depending on the storage period. The accuracy of discrimination for rice was affected by the storage temperature and time, while that for brown rice was more than 92% regardless of the storage conditions. These results suggest that the developed discriminant analysis method could be utilized to determine the production year of rice and brown rice.

Quality Stability of Oleoresin Onion (양파 Oleoresin의 저장중 품질 변화)

  • 최옥수;배태진
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.179-184
    • /
    • 1998
  • As a way of mass process of onion, Allium cepa L., the oleoresin decompressed and concentrated is an alternative process to minimize lowering in the quality of onion during storage, to improve the original flavor and taste, and to increase variety as processing aids. This study was performed to investigate on the quality stability during storage of oleoresin. Oleoresin product was manufactured by mixing a concentration of onion juice and ethanol extract homogenously, emulsified by an additional 2% PGDR(polyglycerol condensed ricinoleate) and 1% cysteine. During 60 days storage at 5$^{\circ}C$, $25^{\circ}C$ and 4$0^{\circ}C$ the total sugar content in oleoresin product was very stable, and absorbances at 420nm as browning reaction index were 0.38, 1.53 and 3.32, respectively, addition of 1% cysteine retarded the browning reaction effectively. When oleoresin product was centrifuged(2000$\times$G, 60 minutes), the volumes of emulsion level without separation were 96.8%, 94.1% and 9.06%, respectively during 20 days, 40 days and 60 days storage at 5$^{\circ}C$, and those during 60 days storage at $25^{\circ}C$ and 4$0^{\circ}C$ were appeared to be 83.2% and 75.4%. Showing lower level as increasing storage temperature. Antioxidant indexes(AI) of soybean oil added 1% oleoresin without storage and 0.02% BHA were 1.39 and 1.72. The former showed 80.8% antioxidant activity on induction time extension effect of the latter. Antioxidant indexes of oleoresin decreased slightly as increasing storage temperature and were 1.37, 1.30 and 1.08. Total pyruvate contents were 89.9%, 79.7% and 65.2%, respectively during 60 days storage at 5$^{\circ}C$, $25^{\circ}C$ and 4$0^{\circ}C$. Rate constant, Q10 value and activation energy were 1.381~4.735 mmol/$\ell$.hr, 1.537~1.694 and 11.649 ㎉/g mole for the reduction of pyruvates in the range of storage temperatures during oleoresin storage.

  • PDF

Effects of Supplemental LED Lighting on Productivity and Fruit Quality of Strawberry (Fragaria × ananassa Duch.) Grown on the Bottom Bed of the Two-Bed Bench System (2단 베드 시스템의 하단부에서 자란 딸기의 생산성 및 과일 품질에 미치는 보광 LED의 효과)

  • Choi, Hyo Gil;Jeong, Ho Jeong;Choi, Gyeong Lee;Choi, Su Hyun;Chae, Soo Cheon;Ann, Seoung Won;Kang, Hee Kyoung;Kang, Nam Jun
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.199-205
    • /
    • 2018
  • The aim of this study was to confirm that effects of supplemental LED illumination on a strawberry yield and fruit quality when strawberry grown on a bottom bed to be deficient ambient light due to shading of a upper bed during cultivation by a two-bed bench system. A strawberry was cultivated as a drip irrigation system in the two-bed bench system filled with a strawberry exclusive media from October 2015 to January 2016. The upper and the bottom bed without LED illumination for growth of a strawberry were using as a control. For LED light treatments, from 10 am to 4 pm, we illuminated LEDs as $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light intensity by using blue, red, and mixing LED (blue plus red) on the strawberry plants of the bottom bed. In the yield of strawberry fruit, the strawberry grown on the bottom bed treated with the blue LED significantly increased compared with that of the bottom bed part control, and increased to by near 90% of the strawberry output of the upper bed part control. The soluble sugar content of strawberry fruit grown on the upper bed part control and on the bottom bed illuminated with blue or mixed LED was higher than that of red LED and the control of the bottom bed. The content of anthocyanin was the highest increased in the strawberry grown on the upper bed part control that received a lot of ambient light, however when comparing only the bottom bed, strawberry fruits grown on all LED treatments were higher than that of the control. Therefore, we considered that using of the blue LED light on the bottom bed of two-bed bench system during strawberry cultivation is advantageous for the increase of yield and improvement of fruit quality.

Changes of Plant Growth, Leaf Morphology and Cell Elongation of Spinacia oleracea Grown under Different Light-Emitting Diodes (발광다이오드 광원에 따른 시금치 생육, 엽 형태형성 및 세포길이 변화)

  • Lee, Myungok;Park, Sangmin;Cho, Eunkyung;An, Jinhee;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.222-230
    • /
    • 2018
  • This study aimed to determine effects of light-emitting diodes on plant growth, leaf morphology and cell elongation of two cultivars ('World-star' and 'Sushiro') of Spinacia oleracea. Plants were grown in a NFT system for 25 days after transplanting (DAT) under the LEDs [White (W), Red and Blue (RB, ratio 2:1), Blue (B), Red (R) LED] under the same light intensity and photoperiod ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours). The 'World-star' variety was significantly higher in shoot fresh and dry weights, leaf number, and leaf area than the 'Sushiro' variety. For the 'World-star' variety, the two treatments of mixed light (RB) and red light (R) showed a 35% higher shoot dry weight than that of blue light (B) and white light (W) at 25 DAT. In the 'Sushiro' variety, mixed light (RB) treatment, which had the highest shoot fresh and dry weights, showed 40% higher than the white light (W) treatment, which had the lowest shoot fresh and dry weights. Both varieties showed leaf epinasty symptom at 21 DAT only in both mixed light (RB) and red light (R), and red light (R) treatment showed significantly higher symptom than mixed light (RB), indicating the leaf epinasty is associated with red light. Microscopic observations of the cell size in the leaf center and edge parts showed that the cell density of leaf edge under the red light (R) was lower than that in leaf center, supporting previous reports that suggest an association of the cell size difference between the leaf center and edge with the leaf epinasty occurrence. Since the blue light (B) plays a role in alleviating the epinasty symptom caused by the red light (R), it seems necessary to identify the appropriate mixing ratio of the two light sources. In addition, the World-star variety seems to be more suitable for the cultivation of plant factory using LED light sources.

Treatment of N, P of Auto-Thermal Thermophilic Aerobic Digestion Filtrate with Struvite Crystallization (Struvite 결정화 반응을 이용한 고온 소화 여과액의 N, P 처리 특성)

  • Choo, Yeon-Duk;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.783-789
    • /
    • 2011
  • Recently, auto-thermal thermophilic aerobic digestion (ATAD) has a great attention for destruction of wasted sludge biomass in wastewater treatment plant. Reduction of sludge concentration has been successfully achieved with pilot scale ATAD and ceramic filtration process in field condition. However, high concentration of COD, total nitrogen (TN) and total phosphorus (TP) was observed in filtrate, which should be treated before recirculation of filtrate to biological wastewater treatment plant. This study was focused on removal of nitrogen and phosphorus contained in the filtrate of ATAD, using struvite crystallization method. The effect of operational and environmental parameters (such as, N, P and Mg ion concentration and molar ratio, pH, reaction time, agitation strength, seed dosage, and reaction temperature) on the treatment of TN and TP with struvite crystallization were evaluated. Magnesium (as $MgCl_26H_2O$) and phosphorus (as $K_2HPO_4$) ions were, if necessary, added to increase nitrogen removal efficiency by the crystal formation. Average concentration of $NH_4^+-N$ and $PO_4^{3-}-P$ of the filtrate were 1716.5 mg/L and 325.5 mg/L, respectively. Relationship between removal efficiencies of nitrogen and phosphorus and molar ratios of $Mg^{2+}$ and $PO_4^{3-}-P$ to $NH_4^+-N$ was examined. Crystal formation and nitrogen removal efficiencies were significantly increased as increasing molar ratios of magnesium and phosphorus to nitrogen. As molar ratio of $Mg^{2+}:PO_4^{3-}-P:NH_4^+-N$ were maintained to 2 : 1 : 1 and 2 : 2 : 1, removal efficiencies of nitrogen and phosphorus were 71.6% and 99.9%, and 93.8% and 98.6%, respectively. However, the effect of reaction time, mixing intensity, seed dose and temperature on the struvite crystallization reaction was not significant, comparing to those of molar ratios. Settled sludge volume after struvite crystallization was observed to be reduced with increase of seed dose and to be increased at high temperature.

MICROLEAKAGE OF THE EXPERIMENTAL COMPOSITE RESIN WITH THREE COMPONENT PHOTOINITIATOR SYSTEMS (3종 광중합개시제를 함유한 실험용 복합레진의 미세누출도)

  • Kim, Ji-Hoon;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • This study was done to determine if there is any difference in microleakage between experimental composite resins, in which various proportions of three component photoinitiators (Camphoroquinone, OPPI, Amine) were included. Four kinds of experimental composite resin were made by mixing 3.2% silanated barium glass (78 wt.%, average size; 1 ${\mu}m$) with each monomer system including variously proportioned photoinitiator systems used for photoinitiating BisGMA/BisEMA/TEGDMA monomer blend (37.5:37.5:25 wt.%). The weight percentage of each component were as follows (in sequence Camphoroquinone, OPPI, Amine): Group A - 0.5%, 0%, 1% / Group B - 2%, 0.2%, 2% / Group C - 0.2%, 1%, 0.2% / Group D - 1%, 1%, 2%. Each composite resin was used as a filling material for round class V cavities (diameter: 2/3 of mesiodistal width; depth: 1.5 mm) made on extracted human premolars and they were polymerized using curing light unit (XL 2500, 3M ESPE) for 40 s with an intensity of 600 mW/$cm^2$. Teeth were thermocycled fivehundred times between $50^{\circ}C$and $550^{\circ}C$for 30s at each temperature. Electrical conductivity (${\mu}A$) was recorded two times (just after thermocycling and after three-month storage in saline solution) by electrochemical method. Microleakage scores of each group according to evaluation time were as follows [Group: at first record / at second record; unit (${\mu}A$)]: A: 3.80 (0.69) / 13.22 (4.48), B: 3.42 (1.33) / 18.84 (5.53), C: 4.18 (2.55) / 28.08 (7.75), D: 4.12 (1.86) / 7.41 (3.41). Just after thermocycling, there was no difference in microleakage between groups, however, group C showed the largest score after three-month storage. Although there seems to be no difference in microleakage between groups just after thermocycling, composite resin with highly concentrated initiation system or classical design (Camphoroquinone and Amine system) would be more desirable for minimizing microleakage after three-month storage.

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.