• Title/Summary/Keyword: Mixing Enhancement

Search Result 240, Processing Time 0.022 seconds

Enhancement of Biological Control of Botrytis cinerea on Cucumber by Foliar Sprays and Bed Potting Mixes of Trichoderma harzianum YC459 and Its Application on Tomato in the Greenhouse

  • Lee Sun-Kug;Sohn Hwang-Bae;Kim Geun-Gon;Chung Young-Ryun
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.283-288
    • /
    • 2006
  • Trichoderma harzianum YC459 (Th 459), isolated from sawdust compost, was effective in controlling cucumber and tomato gray mold caused by Botrytis cinerea under controlled and plastic film tunnel conditions. A water suspension of the wettable powder formulation of Th 459 significantly $(P\leq0.05)$ reduced the severity of cucumber gray mold by foliar spraying at all tested concentrations from $10^5\;to\;10^8$ colony forming unit (cfu)/ml in repeated experiments. The control efficacy was maintained at least seven days with the average control value of 70% in cucumber pot tests. Mixing one to eight grams of the granular formulation ($10^8cfu/g$ dry weight) of Th 459 into one liter nursery potting mix at seeding also significantly $(P\leq0.05)$ reduced the severity of cucumber gray mold by suppression of lesion formation three weeks after treatment. Application of mixing granular formulation at seeding in combination with foliar spraying during cultivation provided a more significant reduction $(P\leq0.05)$ of cucumber gray mold than granule mixing or leaf spray alone. The foliar spraying of the formulated wettable powder of Th 459 significantly $(P\leq0.05)$ reduced the infection of tomato fruits by B. cinerea as effective as the chemical fungicide, dichlofluanid, in three plastic film tunnel experiment trials. It is suggested that effective control of gray mold of cucumber and tomato can be provided by both treatment of Th 459 into potting mix and foliar spray through induction of systemic resistance and direct inhibition of the pathogen.

Selection of Microorganisms and Optimization of Manufacture Process for Cheonggukjang (고품질의 청국장 생산 발효균주 선별 및 최적화)

  • Hwang, Hyun-Ae;Lee, Nam-Kuen;Cho, Il-Jae;Hahm, Young-Tae;Kwon, Ki-Ok;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.406-411
    • /
    • 2008
  • This study was conducted to examine the quality enhancement of fermented soybean pastes (cheonggukjang) using microorganisms with high enzyme activities and proper experimental design. The microorganisms for soybean paste fermentation were selected from a specific area of Gyeonggi and were idenlified by 16S rDNA sequence analysis. To prepare the cheonggukjang, an optimum mixing ratio of selected microorganisms was determined using contour plots and numerical optimization methods. A total of 39 microorganisms were isolated from the soybean paste, consisting primarily of Bacillus subtilis and Bacillus licheniformis, and no mold was found. Three microorganisms showing high enzyme activities were selected and used to formulate an optimum mixing ratio for cheonggukjang preparation. Based on levels of amino-nitrogen, ammonium-nitrogen, antioxidant activity values, and sensory preference results, the optimum mixing ratio of 50% of Bacillus sp. SC-1 and 50% SC-3 was suggested for the manufacture of high quality of cheonggukjang.

A Study on the MHD Micropump with Mixing Function (혼합 기능을 갖는 마이크로 펌프의 연구)

  • Choi, Bum-Kyoo;Kang, Ho-Jin;Kim, Min-Sock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.579-586
    • /
    • 2010
  • With the development of micrototal analysis systems (${\mu}TAS$), which is a result of enhancement of MEMS technology, rapid progress has been achieved in medical and biological research. The study of lab-on-a-chip (LOC) devices, which are types of ${\mu}TAS$ and which integrate the functions of mixing and analyzing tiny amounts of samples and reagents on one chip, has actively progressed. An LOC comprises microfluidic components such as micromixers and micropumps. Because the flow in a microfluidic system is generally laminar, it is very difficult to efficiently mix and feed fluid reagents. This paper presents the design and the method of fabrication of an MHD micropump for mixing fluids. By using this micropump, fluids are simultaneously mixed and pumped; this is achieved by coupling the Lorentz force and force exerted by an electric charge moving in an electric field.

Dynamic and Durability Properties of the Low-carbon Concrete using the High Volume Slag (High Volume Slag를 사용한 저탄소 콘크리트의 역학 및 내구특성)

  • Moon, Ji-Hwan;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.351-359
    • /
    • 2013
  • Blast furnace slag (BFS) have many advantages that are related to effective value improvement on applying to concrete while side effects of blast furnace slag also appear. Thus, research team conducted an experiment with high volume slag to see if the attribute of waste alkali accelerator for mixing rate, mixed use of NaOH and $Na_2SiO_3$, and early strength agent for mixing rate for replacement ratio and for the types of the stimulants in order to increase the use of blast furnace slag1s powder. As the result of the experiment, when it comes to compression strength, all of the alkali stimulants have been improved as the replacement rate increases except for sodium hydroxide. Among the alkali stimulants, sodium silicate was high on dynamic elastic modulus and absorption factor. In case of early strength agent, the mix of mixing 1.5% and blast furnace slag 75% have showed high strength enhancement. In event of Waste Alkali accelerator, it has showed different consequences for each experiment.

Experimental Study on Combustion Characteristics of Porous Ceramic Liquid Fuel Combustor (다공 세라믹 액체 연료 연소기의 연소 특성에 관한 실험적 연구)

  • Chung, K.H.;Lim, I.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.85-93
    • /
    • 1999
  • Experimental study on a porous ceramic liquid fuel combustor is performed. Compact burner with low pollutant emission and high combustion efficiency is realized through the use of porous ceramic materials of high porosities. The use of porous ceramic materials in burner material results in rapid vaporization of liquid fuel and enhancement in mixing process, and thus nearly premixed combustion of liquid fuel is achieved instead of diffusion and partially premixed combustion method, which is often used and apt to produce high pollutant emissions such as CO, NOx and soot. With this enhanced vaporization and premixing method of liquid fuel vapor and air, it is found that enhanced combustion process with intense radiation output and better emission characteristics in NOx, CO and soot emission, compared to other conventional liquid fuel burning method, are possible.

  • PDF

A Study on Combustion Characteristics of Turbulent Methane/Oxygen Diffusion Flames (메탄/산소 난류 확산화염의 연소 특성에 관한 연구)

  • Lee, Sang-Min;Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.118-123
    • /
    • 2004
  • The combustion characteristics of 0.03MW turbulent methane/oxygen diffusion flames have been investigated to give basic informations for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since 3-5% nitrogen is intrinsically included from the current oxygen producing processes. Flame lengths and NOx concentrations were measured by varying flow velocities with and without installing quarls. Flame stabilities are significantly enhanced by oxyfuel combustion in contrast to air-fuel combustion. Flame length decreases with increasing fuel or oxygen velocity because of the enhancement of turbulent mixing. NOx concentration was reduced with increasing flo velocities. This can be attributed to the entrainment of inert product gases into flame decreasing flame temperature. The installation of quarl on the burners rather increased NOx concentration since the quarl blocked the entrainment above the nozzles.

  • PDF

Numerical Investigation on the Thermal Characteristics of Mild Combustion According to Co-axial Air (동축공기에 따른 Mild 연소의 열적 특성에 대한 수치연구)

  • Hwang, Chang-Hwan;Baek, Seung-Wook;Kim, Hak-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2010
  • Mild combustion is considered as a promising combustion technology for energy saving and low emission of combustion product gases. In this paper, the controllability of reaction region in mild combustion is examined by using co-axial air nozzle. For this purpose, numerical approach is carried out. Propane is considered for fuel and air is considered for oxidizer and the temperature of air is assumed 900K slightly higher than auto ignition temperature of propane. But unlike main air, the atmospheric condition of co-axial air is considered. Various cases are conducted to verify the characteristics of Co-Axial air burner configuration. The use of coaxial air can affect reaction region. These modification help the mixing between fuel and oxidizer. Then, reaction region is reduced compare to normal burner configuration. The enhancement of main air momentum also affects on temperature uniformity and reaction region. The eddy dissipation concept turbulence/chemistry interaction model is used with two step of global chemical reaction model.

Low temperature activation of dopants by metal induced crystallization (금속 유도 결정화에 의한 저온 불순물 활성화)

  • 인태형;신진욱;이병일;주승기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.5
    • /
    • pp.45-51
    • /
    • 1997
  • Low temperature activation of dopants which were doped using ion mass doping system in amorphous silicon(a-Si) thin films was investigated. With a 20.angs.-thick Ni film on top of the a-Si thin film, the activation temperature of dopants lowered to 500.deg. C. When the doping was performaed after the deposition of Ni thin film on the a-Si thin films (post-doping), the activation time was shorter than that of dopants mass, the activation time of the dopants doped by pre-doping method increased. It turned NiSi2 formation, while the decrease of activation time was mainly due to the enhancement of the NiSi2 formation by mixing of Ni and a-Si at the interface of Ni and a -Si thin during the ion doping process.

  • PDF

Fluorophotometric Determination of Basic Drugs with Lumogallion, Superchrome Garnet Y and Their Alkyl Derivatives (루모갈리온, 슈퍼크롬 가넷 와이 및 그 알킬 유도체에 의한 염기성 의약품의 형광정량)

  • 송만영;김동오;이은엽;안문규
    • YAKHAK HOEJI
    • /
    • v.37 no.3
    • /
    • pp.209-215
    • /
    • 1993
  • Basic drugs could be extracted as ion-paired complexes with Lumogallion, Superchrome Garnet Y and their alkyl derivatives from aqueous acid solution, and then determined fluoro-metrically after addition of aluminum ion. The analysis was carried out as follows; To a 1 ml portion of basic drugs (10$^{-9}$~2$\times$0$^{-8}$mole/ml), 1ml of 0.01w/v% fluorescent reagent solution, and 10ml of dichloroethane are added. The mixture is stirred for 1 minute. After standing for a few minutes, the dichloroethane layer is transfered to 1 ml of 0.1w/v% Al(NO$_{3}$)$_{3}$ ethanol solution. After mixing, and standing for 30 minutes at room temperature, the fluorescence intensity is measured with each maximum excitation and emission wavelength. The reagent blank is run through the whole procedure. From the degree of enhancement of fluorescence intensity, hexyl and dodecyl lumogallion and Superchrome Garnet Y were judged to be the useful one of fluorescent reagent for basic drugs analysis.

  • PDF

Experiments on Heat Transfer Characteristics and Pressure Drop in Micro-channel Plate Heat Exchangers with 3D shapes (마이크로 채널 판형 열교환기의 3차원 형상에 따른 열전달 특성 및 압력강하 실험)

  • Seo, Jang-Won;Lee, Kyu-Jung;Kim, Yoon-Ho;Moon, Chung-Eun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.213-219
    • /
    • 2008
  • Microscale heat transfer and microfluidics have become increasingly important to overcome some very complex engineering challenges. The use of very small passages to gain heat transfer enhancement is a well documented method for achieving high heat flux dissipation. In this study, the performance evaluation of micro-channel plated heat exchangers with straight, V-shaped and Y-shaped channels has been experimentally carried out under the counterflow condition. It is found that the mixing effect in V-shaped and Y-shaped channels enhances the heat transfer but pressure drop does not increase seriously in the range of low Reynolds number.