• Title/Summary/Keyword: Mixed source

Search Result 878, Processing Time 0.03 seconds

Improved Excitation Modeling for Low-Rate CELP Speech Coding

  • Kwon, Chul-Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2E
    • /
    • pp.24-30
    • /
    • 1999
  • In this paper, we propose a weighting dependent mixed source model (WD-MSM) coder that is an improved version of a CELP-based mixed source model (C-MSM) coder. The coder classifies speech segments into three types : voiced, unvoiced and mixed. The excitation for a voiced frame is an adaptive source, and the excitation for an unvoiced frame is a stochastic source. The coder has a modified mixed source for a mixed frame. We apply different weighting functions for three classes. Simulation results show that the proposed coder at 4 kbits/s yields very good performance both subjectively and objectively.

  • PDF

Design of Source Driver for QVGA-Scale LDI Using Mixed Driving Method (Mixed Driving 방식을 이용한 QVGA급 LDI의 Source Driver 설계)

  • Kim, Hak-Yun;Ko, Young-Keun;Lee, Sung-Woo;Choi, Ho-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.40-47
    • /
    • 2009
  • In this paper, we present the design of a source driver of QVGA scale TFT-LCD driver IC which uses a mixed driving method and performs $\gamma$-correction to improve image. The source driver with 240 RGB ${\times}$ 320 dots resolution drives a TFT-LCD panel through 720 channels and implements 262k colors using 18-bit RGB data format. The mixed driving method is a mixture the channel amp. driving method with high drivability and the gray amp. driving method with small area, which remarkably reduces channel driver areas. The driver has been designed using the $0.35{\mu}m$ Magnachip embedded DRAM technology and simulated using the HSPICE simulator. The results show that our source driver operates well with y-correction and the channel driver has $17{\mu}s$ channel driving time with only 78 driving amplifiers and control logic.

The Sorption Kinetic Studies and Development of Mixed Culture for Removal of Nonpoint Pollution Source (비점오염원 처리를 위한 혼합여재의 개발 및 흡착 Kinetic 연구)

  • Chung, Woojin;Lee, Sijin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.37-44
    • /
    • 2012
  • This study investigated on the adsorption of nonpoint pollution source using the Sand, hydroxyapatite(HAP), Zeolite and mixed culture. The adsorption of nonpoint pollution source on Sand, hydroxyapatite(HAP), Zeolite and mixed culture was investigated during a series of batch adsorption experiments. After the batch absorption experiments analysed COD, T-N, T-P on adsorption water. The experimental data was analysed using the pseudo-first-order adsorption kinetic models. Langmuir and Freundlich isotherm models were tested for their applicability. The maximum adsorbed amount $(Q_{max})$ of COD were found to be sand 0.0511mg/g, HAP 0.1905mg/g, Zeolite 1.0366mg/g and Mixed media 0.7444mg/g. The maximum adsorbed amount $(Q_{max})$ of T-N were found to be sand 0.0159mg/g, HAP 0.0537mg/g, Zeolite 0.5496mg/g and Mixed media 0.1374mg/g. The maximum adsorbed amount $(Q_{max})$ of T-P were found to be sand 0.0202mg/g, HAP 0.1342mg/g, Zeolite 0.0462mg/g and Mixed media 0.1180mg/g. As a result, the mixed media was effective to remove nonpoint pollution source.

Simple closed-form solution for a single source estimation in mixed far-field and near-field conditions (원근 혼합환경에서 간단한 닫힌 형식을 이용한 단일 음원 위치 추정 기법)

  • Jung, Tae-Jin;Lee, KyunKyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Based on correlation and least square method, a closed-form algorithm for estimating the location of mixed far-field and near-field source is presented using the Uniform Circular Array (UCA). Recently, for a homogeneous circular arrangement case, a correlation based closed-form algorithm is proposed to estimate 2-D angle (azimuth, elevation) and the extended algorithm is proposed to 3-D location (azimuth, elevation, range). These algorithms assume the far-field source or near-field source only. Therefore, for mixed source localization, the proposed algorithm estimates source location with the assumption of far-field source, and then estimates the range to distinguish the far-field from the near-field source. For both cases, numerical experiments have been performed, which confirmed the validity of the proposed algorithm.

Effects of Rain Gardens on Removal of Urban Non-point Source Pollutants under Experimental Conditions (실험실 조건에서 레인가든의 도시 비점오염물질 제거효과)

  • Kim, Changsoo;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.676-685
    • /
    • 2012
  • As impermeable layer continues to increase with the urbanization process, direct input of nonpoint source pollutants into water bodies via stormwater has caused serious effects on the aquatic ecosystem. Potential applications of rain gardens are increasing not only as best management practices (BMP) for reducing the level of nonpoint source pollutants but also as an ecological engineering alternative for low impact development (LID). In this study, remediation performance of various planting types, such as a mixed planting system with shrubs and herbaceous plants, was assessed quantitatively to effectively manage stormwater and increase landscape applicability. The mixed planting system with Rhododendron lateritium and Zoysia japonica showed the highest removal performance of $76.9{\pm}7.6%$ and $58.4{\pm}5.0%$ for total nitrogen and $89.9{\pm}7.9%$ and $82.4{\pm}5.2%$ for total phosphorus at rainfall intensities of 2.5 mm/h and 5.0 mm/h, respectively. The mixed planting system also showed the highest removal performance for heavy metals. The results suggest that a rain garden with the mixed planting system has high potential applicability as a natural reduction system for nonpoint source pollutants in order to manage stormwater with low concentrations of pollutants and will increase water recycling in urban areas.

Performance Optimization of LDMOS Transistor with Dual Gate Oxide for Mixed-Signal Applications

  • Baek, Ki-Ju;Kim, Yeong-Seuk;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.254-259
    • /
    • 2015
  • This paper reports the optimized mixed-signal performance of a high-voltage (HV) laterally double-diffused metaloxide-semiconductor (LDMOS) field-effect transistor (FET) with a dual gate oxide (DGOX). The fabricated device is based on the split-gate FET concept. In addition, the gate oxide on the source-side channel is thicker than that on the drain-side channel. The experiment results showed that the electrical characteristics are strongly dependent on the source-side channel length with a thick gate oxide. The digital and analog performances according to the source-side channel length of the DGOX LDMOS device were examined for circuit applications. The HV DGOX device with various source-side channel lengths showed reduced by maximum 37% on-resistance (RON) and 50% drain conductance (gds). Therefore, the optimized mixed-signal performance of the HV DGOX device can be obtained when the source-side channel length with a thick gate oxide is shorter than half of the channel length.

Multiple Mixed Modes: Single-Channel Blind Image Separation

  • Tiantian Yin;Yina Guo;Ningning Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.858-869
    • /
    • 2023
  • As one of the pivotal techniques of image restoration, single-channel blind source separation (SCBSS) is capable of converting a visual-only image into multi-source images. However, image degradation often results from multiple mixing methods. Therefore, this paper introduces an innovative SCBSS algorithm to effectively separate source images from a composite image in various mixed modes. The cornerstone of this approach is a novel triple generative adversarial network (TriGAN), designed based on dual learning principles. The TriGAN redefines the discriminator's function to optimize the separation process. Extensive experiments have demonstrated the algorithm's capability to distinctly separate source images from a composite image in diverse mixed modes and to facilitate effective image restoration. The effectiveness of the proposed method is quantitatively supported by achieving an average peak signal-to-noise ratio exceeding 30 dB, and the average structural similarity index surpassing 0.95 across multiple datasets.

Characterization of In(Al)GaN layer grown by mixed-source hydride vapor phase epitaxy (혼합소스 HVPE에 의해 성장된 In(Al)GaN 층의 특성)

  • Hwang, S.L.;Kim, K.H.;Jang, K.S.;Jeon, H.S.;Choi, W.J.;Chang, J.H.;Kim, H.S.;Yang, M.;Ahn, H.S.;Bae, J.S.;Kim, S.W.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.157-161
    • /
    • 2006
  • InGaN layers on GaN templated sapphire (0001) substrates were grown by mixed-source hydride vapor phase epitaxy (HVPE) method. In order to get InGaN layers, Ga-mixed In metal and $NH_3$ gas were used as group III and group V source materials, respectively. The InGaN material was compounded from chemical reaction between $NH_3$ and indium-gallium chloride farmed by HCl flowed over metallic In mixed with Ga. The grown layers were confirmed to be InGaN ternary crystal alloys by X-ray photoelectron spectroscopy (XPS). In concentration of the InGaN layers grown by selective area growth (SAG) method was investigated by the photoluminescence (PL) and cathodoluminescence (CL) measurements. Indium concentration was estimated to be in the range 3 %. Moreover, as a new attempt in obtaining InAlGaN layers, the growth of the thick InAlGaN layers was performed by putting small amount of Ga and Al into the In source. We found the new results that the metallic In mixed with Ga (and Al) as a group III source material could be used in the growth process of the In(Al)GaN layers by the mixed-source HVPE method.

Mixed Driving Circuit for QVGA-Scale LDI (QVGA급 LDI를 위한 혼합 구동 회로)

  • Ko, Young-Keun;Kwon, Yong-Jung;Lee, Sung-Woo;Kim, Hak-Yun;Choi, Ho-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.573-574
    • /
    • 2008
  • In this paper, we propose a mixed driving circuit for the source driver of QVGA-scale TFT-LCD driver IC to reduce the area of the source driver. In the mixed driving circuit, graphic data pass or go through the mixed channel driver whether RGB data are the same or not. The mixed driving circuit has been designed in transistor level using the 0.35um CMOS technology and has been verified using Hspice.

  • PDF