• 제목/요약/키워드: Mixed integer optimization

검색결과 155건 처리시간 0.026초

A remark to a Constrained OWA Aggregation

  • Hong Dug Hun;Kim Kyung Tae
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.355-356
    • /
    • 2005
  • The problem of maximizing an OWA aggregation of a group of variables that are interrelated and constrained by a collection of linear inequalities is considered by Yager[Fuzzy Sets and Systems, 81(1996) 89-101]. He obtained how this problem can be modelled as a mixed integer linear programming problem. Recently, Carlsson et al. [Fuzzy Sets and Systems, 139(2003) 543-546] obtained a simple algorithm for exact computation of optimal solutions to a constrained OWA aggregation problem with a single constraint on the sum of all decision variables. In this note, we introduce anew approach to the same problem as Carlsson et al. considered. Indeed, it is a direct consequence of a known result of the linear programming problem.

수량 할인이 있는 확률적 재고 모형에서의 조달기간의 단축

  • 문일경;김태영
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2002년도 춘계공동학술대회
    • /
    • pp.378-384
    • /
    • 2002
  • In this paper, we propose a mixed integer optimization approach for solving the inventory problem with variable lead time, reorder point, crashing cost and price -quantity discount. Chang and Chang[15] study a continuous review inventory model in which lead time is a decision variable under price-quantity discount. However, their study cannot find the optimal solution due to the flaws in the modeling and the solution procedure. We present a complete procedure to find the optimal solution for the model. In addition to the above contribution, we also apply the minimax distribution free approach to the model to devise a practical procedure which can be used without specific information on demand distribution.

  • PDF

수직통합 의사결정을 위한 계량분석모형 (A mathematical planning model for vertical integration)

  • 문상원
    • 경영과학
    • /
    • 제10권1호
    • /
    • pp.193-205
    • /
    • 1993
  • This paper presents a mathematical model for a class of vertical integration decisions. The problem structure of interest consists of raw material vendors, components suppliers, components processing plants, final product (assembly) plants and external components buyers. Economic feasibility of operating components plants instead of keeping outside suppliers is our major concern. The model also determines assignment of product lines and production volumes to each open plant considering the cost impacts of economies of scale and plant complexity. The problem formulation leads to a concave, mixed integer mathematical program. Given the state of the art of nonlinear programming techniques, it is often not possible to find global optima for reasonably sized such problems. We developed an optimization solution algorithm within the framework of Benders decomposition for the case of a piecewise linear concave cost function. It is shown that our algorithm generates optimal solutions efficiently.

  • PDF

An empirical study on the material distribution decision making

  • Ko, Je-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.355-361
    • /
    • 2010
  • This paper addresses a mathematical approach to decision making in a real-world material distribution situation. The problem is characterized by a low-volume and highly-varied mix of products, therefore there is a lot of material movement between the facilities. This study focuses especially on the transportation scheduler with a tool that can be used to quantitatively analyze the volume of material moved, the type of truck to be used, production schedules, and due dates. In this research, we have developed a mixed integer programming problem using the minimum cost, multiperiod, multi-commodity network flow approach that minimizes the overall material movement costs. The results suggest that the optimization approach provides a set of feasible solution routes with the objective of reducing the overall fleet cost.

유연한 셀생산을 위한 최적가공경로와 생산조건의 결정 (Optimization Analysis of Flexible Cellular Manufacturing: Route Selection and Determining the Optimal Production Conditions for Ordered Products)

  • 송상재;최정희
    • 대한산업공학회지
    • /
    • 제18권1호
    • /
    • pp.47-62
    • /
    • 1992
  • This paper describes a procedure for optimizing the route selection and production conditions in alternate process plans under a cellular manufacturing environment. The type of production is mainly production-to-order which deals with unexpected products as the changes factor. The flexible cellular manufacturing can be viewed as a complete unification of both flexible manufacturing process and flexible production management. The integrated problem for designing flexible cellular manufacturing associated with determining the optimal values of the machining speeds, overtime, and intercell flow is formulated as Nonlinear Mixed Integer Programming(NMIP) in order to minimize total production change cost. This is achieved by introducing the marginal cost analysis into the NMIP, which will compute the optimal machining speed, overtime, intercell flow, and routing. The application of this procedure offers greater flexibility to take advantage of the cellular manufacturing due to the optimum use of resources. A solution procedure for this problem was developed and a numerical example is included.

  • PDF

불확실성을 고려한 해군함정 선석 할당 방안 (The Berth Allocation Method for the Navy Surface Vessels Considering Uncertainty)

  • 정환식;이재영;이용대
    • 한국군사과학기술학회지
    • /
    • 제13권5호
    • /
    • pp.748-758
    • /
    • 2010
  • Navy surface vessels require pier services such as emergency repair, oil supply, arm loading/unloading, craning, standby readiness, normal repair, gun arrangement, ammunition loading, and food loading during the period in port. The purpose of this study is to establish efficient berth allocation plan for navy surface vessels in home port under the limited resources of piers and equipments. This study suggests Mixed Integer Programming model for berth allocation problem, considering precedence relationships among services and the uncertainty of the arrival and departure for each vessel. For an effective analysis, the model is implemented by ILOG OPL(Optimization Programming Language) Studio 6.0 and ILOG CPLEX 11.1., which shows a reasonable result.

반도체/LCD 스케줄링의 다목적기준 간 트레이드 오프 구조에 대한 연구 (A Study on Multi-criteria Trade-off Structure between Throughput and WIP Balancing for Semiconductor Scheduling)

  • 김광희;정재우
    • 경영과학
    • /
    • 제32권4호
    • /
    • pp.69-80
    • /
    • 2015
  • The semiconductor industry is one of those in which the most intricate processes are involved and there are many critical factors that are controlled with precision in those processes. Naturally production scheduling in the semiconductor industry is also very complex and studied by the industry and academia for many years; however, still there are many issues left unclear in the problem. This paper proposes an multi-objective optimization-based scheduling method for semiconductor fabrication(fab). Two main objectives are throughput maximization and meeting target production quantities. The first objective aims to reduce production cost, especially the fixed cost incurred by a large investment constructing a new fab facility. The other is meeting customer orders on time and also helps a fab maintain stable throughput through controlled WIP balancing in the long run. The paper shows a trade-off structure between the two objectives through experimental studies, which provides industrial practitioners with useful references.

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

용량 제약이 있는 이계층 설비 입지선정 문제의 최적화 해법 (An Optimization Algorithm for the Two-Echelon Capacitated Facility Location Problem)

  • 김은정;강동한;이경식;박성수
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.137-144
    • /
    • 2003
  • We consider Two-echelon Single source Capacitated Facility Location Problem (TSCFLP). TSCFLP is a variant or Capacitated Facility Location Problem (CFLP). which has been an important issue in boa academic and industrial aspects. Given a set or possible facility locations in two echelons (warehouse / plant), a set or customers, TSCFLP is a decision problem to find a set or facility locations to open and to determine an allocation schedule that satisfies the demands or the customers and the capacity constraints or the facilities, while minimizing the overall cost. It ran be shown that TSCFLP Is strongly NP-hard For TSCFLf, few algorithms are known. which are heuristics. We propose a disaggregated version or the standard mixed integer programming formulation or TSCFLP We also provide a class or valid Inequalities Branch-and-price algorithm with rutting plane method Is used to find an optimal solution Efficient branching strategy compatible with subproblem optimization problems Is also provided. We report computational results or tests on 15 randomly generated instances.

  • PDF

Cell Transmission 이론에 근거한 시스템최적 신호시간산정 (Development of A System Optimum Traffic Control Strategy with Cell Transmission Model)

  • 이광훈;신성일
    • 대한교통학회지
    • /
    • 제20권5호
    • /
    • pp.193-206
    • /
    • 2002
  • 신호교차로로 구성된 네트워크의 시스템최적 신호시간산정을 위해 Cell Transmission 이론을 교통류 모형으로 활용한 신호최적화 모형을 제안한다. Cell Transmission 모형은 기존에 소개된 신호최적화 모형과는 달리 충격파, 대기행렬의 길이, 그리고 하류부 교차로 대기행렬의 역류(Spillback)과 같은 과포화 현상을 표현하는데 적절한 이론적이고 실제적인 배경을 지원한다. 모형에서 기점을 출발한 수요차량은 종점에 도착할 때까지 경로선택을 통해서, 그리고 신호시스템은 이러한 수요의 움직임 고려하여 신호시간요소의 최적화를 통한 네트워크의 비용을 최소화하기 위해 서로 협력한다는 의미에서 제안된 모형은 시스템 최적화를 의미한다. 모형은 혼합정수계획법으로 정식화되며 최적신호전략과 고정신호전략간의 실험계획을 통해 구축된 모형을 비교·평가한다.