• Title/Summary/Keyword: Mixed Gases

Search Result 229, Processing Time 0.03 seconds

Assessment of Practical Use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics (혼합폐플라스틱의 열분해를 통한 회수오일의 이용가능성 평가)

  • Phae Chae-Gun;Kim Young-shin;Jo Chang-Ho
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.159-166
    • /
    • 2005
  • In Korea, although the generation of waste plastic has been increasing, the rate of recycling is considerably low and moreover, there is no suitable method for the treatment of waste plastics. However, pyrolysis, which is appropriate for the treatment of highly polymerized compounds, such as plastics, has recently gained much interest. In this study, a property of the products from the pyrolysis of mixed waste plastics, with a possible practical use for the recycling oil produced, were assessed. First of all, in order to investigate the pyrolysis characteristic of waste plastics, TGA (Thermogravimetric analysis) and DCS (Differential Scanning Calorimetry) were performed on a number of different plastics, including PP, LDPE, HDPE, PET and PS, as well as others. According to the result, it appeared that PP was the most efficiently pyrolyzed by changing the temperature, followed by LDPE, HDPE, PET, PS and the other plastics, in that order. From the results, the optimum conditions f3r pyrolysis were set up, and the different waste plastics pyrolyzed. The recycling oil produced from the flammable gases generated during the pyrolysis was com-pared with fuel oil by an analysis using the petroleum quality inspection method on KS(Korea industrial Standard). The results of the analysis showed the recycling oil was of a similar standard to fuel oil, with the exception of the ignition point, with a quality somewhere between that of paraffin oil and diesel fuel. With respect to these results, the quality of the recycling oil produced by the pyrolysis of waste plastics was suf-ficient for use as fuel oil.

Oxidation Behavior of the HVOF-sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr Coating Layer (HVOF 용사된 $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr 용사층의 산화 거동)

  • Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.757-765
    • /
    • 1998
  • This study was performed to investigate the influence of fuel/oxygen ratio (F/O= 3.2, 3.0, 2.8) on the oxidation behavior of two kinds of (20wt%NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$, and 7wt%NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$) composite powder with different manufacturing method. The results show that the oxidation behavior between the 20wt% NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ and 7wt% NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ coating was widely different. The surface morphology of the coating composed of 7wt% NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ was changed to porous with F/O ratio by the aggressive evolution of gas phases($\textrm{CO}_2$, CO and $\textrm{CrO}_3$) and the oxide cluster composed of Ni and Cr were grown after oxidation at $1000^{\circ}C$ for 50 hours. But the surface morphology of the coating composed of 20wt% NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ was not changed to porous after oxidation at $1000^{\circ}C$ for 50 hours. Therefore, the reason for high oxidation rate is due to activation of $\textrm{Cr}_{3}\textrm{C}_{2}$ to oxidation by entrapped oxygen gases within coating layer, and to closely relate with the decomposition of $\textrm{Cr}_{3}\textrm{C}_{2}$ to $\textrm{Cr}_{7}\textrm{C}_{3}$ phase. Accordingly, On the evidence of these results, the study about the oxidation behavoir of the HVOF sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$ coating depending on hydrogen flow rate must be done.

  • PDF

Disposal of CO in CO-Poisoning Dogs (일산화탄소중독견(一酸化炭素中毒犬) 체내(體內)에서의 일산화탄소처리능(一酸化炭素處理能)에 관(關)하여)

  • Ryo, Ung-Yun;Kang, Bann
    • The Korean Journal of Physiology
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 1968
  • The Present study attempted to analyze the fate of CO diffused into the circulating blood through the alveoli. Dogs were induced to CO poisoning by rebreathing CO gas mixture contained in Krog's spirometer, by closed circuit method, for 60 minutes. The spirometer was filled initially with 282 ml of CO and 20 liters of air and oxygen, so the composition of gases were arranged as 1.4% in CO and 50% in $O_2$ at the begining of the rebreathing. Oxygen was added corresponding to the utilization of $O_2$ by the animal in proceeding of the experiment. At 60th minutes of CO rebreathing, the concentration of CO in arterial blood and in mixed venous blood were analysed and compared with each other after the CO contents were corrected with the hematocrit measured in the arterial and mixed venous blood. The distribution of CO gas to other tissues was estimated by the analysis of CO diffused into the cystic bile and into the peritoneal gas pocket which was formed by injection of 300 ml air into the peritoneal cavity prior to the CO gas rebreathing. The blood volume was measured by dilution method using $^{51}Chromium$ tagged red cells. CO amount vanished in the animal body was calculated by subtraction of total CO content in blood stream and the CO remained in closed circuit breathing system from the CO amount given to the breathing system at the begining of the experiment. Results obtained are summarized as follows: 1. The content of CO corrected by the hematocrit value was slightly less in mixed venous blood than in arterial blood. The amount of CO diffused into the cystic bile and into the peritoneal cavity was averaged to 0.1% and 0.4% of the CO amount in 100 ml of blood, respectively. 2. For 60 minutes of CO rebreathing, CO-hemoglobin saturation reached about 77% at the 60th minutes, CO amount vanished in the experimental animal averaged 36.1 ml/dog/hr., or 21% of the total CO volume in the blood stream. The average vanishing rate of CO during 60 minutes of CO rebreathing per kg of body weight was 2.71 ml/hr. Production of CO measured in ten dogs under hypoxic condition averaged 0.023 ml/kg/hr. The major part of the CO vanished in the dogs seemed to be oxidized to $CO_2$ by various tissues of the animal. The conclusion might be delivered as such oxidation of CO to $CO_2$ by animal tissues can play a role in part of the process of recovery and protection of animal from CO-poisoning.

  • PDF

Recent Research Trends of Mixed Matrix Membranes for CO2 Separation (이산화탄소 분리용 혼합 매질 분리막 최신 연구 동향)

  • Chi, Won Seok;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.373-384
    • /
    • 2015
  • In the past few decades, polymeric membrane has played an important role in gas separation applications. For the separation of $CO_2$, one of greenhouse gases, high permselectivity, long-term stability and scale-up are needed. However, conventional polymeric membranes have shown a trade-off relation between permeability and selectivity while inorganic materials are highly permeable but expensive. Mixed matrix membranes (MMMs) combining the advantages of both polymeric and inorganic materials have become a possible breakthrough for the next-generation gas separation membranes. The MMMs could be either symmetric or asymmetric but the latter is more preferred to improve the permeance. Important factors influencing the MMM fabrication include homogeneous distribution of inorganic particles and good interfacial contact between inorganic filler and organic matrix. Recently, metal organic frameworks (MOFs) have received much attention as a new class of porous crystalline materials and a potential candidate for $CO_2$ separation. Zeolitic imidazolate frameworks (ZIFs), a sub-branch of MOFs, are the most widely used in MMMs due to small particle size and appropriate pore size for $CO_2$ separation. One of the major issues associated with the incorporation of porous particles in a polymeric membrane is to control the microstructure of the porous particle materials such as particle size, orientation, and boundary conditions etc. In this review, major challenges surrounding MMMs and the strategies to tackle these challenges are given in detail.

Cathode materials advance in solid oxide fuel cells (고체산화물연료전지 공기극의 재료개발동향)

  • Son, Young-Mok;Cho, Mann;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

Reduction of Odor Emission from Swine Excreta using Silver Nano Colloid (은 나노 콜로이드를 이용한 돼지분뇨의 악취 저감 효과)

  • Kim, Koo-Pil;Choi, Young-Soo;Oh, Kwang-Hyun;Koo, Kyung-Bon;Suh, Sang-Ryong;Yoo, Soo-Nam;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.342-347
    • /
    • 2011
  • The effect of SNC(silver nano colloid) on the emission reduction of odors such as ammonia ($NH_3$), hydrogen sulfide ($H_2S$), and methane ($CH_4$) from swine excreta was studied. Silver has been used as an universal antibiotic substance and can reduce the emission of some gases by sterilizing action. Therefore, an apparatus which produces SNC was developed and was conducted its performance test. Also, the SNC made by the apparatus was applied to swine excreta sampled from a piggery in oder to find the effect on the reduction of odor emission. An electrolysis apparatus was developed to produce SNC and its capacity was 0.024 ppm/$hr{\cdot}L$. The effects of SNC on the reduction of odor emission from swine excreta were tested for bad smell gases of ammonia ($NH_3$), hydrogen sulfide ($H_2S$) and methane ($CH_4$). For ammonia gas, factorial experiments were conducted to find the effects of concentration and application rate of SNC. The test results for the different concentrations of 20 ppm, 50 ppm, and 100 ppm showed that the more concentration of SNC was increased, the more emission reduction of ammonia gas increased. From the test results about the effect of application rate, the more SNC was applied, the more emission reduction of $NH_3$ increased. In order to reduce the concentration of $NH_3$ below 5 ppm, SNC of 50 ppm is recommended to be applied at an interval of 6 hours, and is mixed with swine excreta in the volumetric ratio of 4:1. For hydrogen sulfide gas, the concentration was decreased as time went by and was reduced rapidly in the first stage of the tests for all applied concentrations of SNC (20 ppm, 50 ppm, and 100 ppm). Especially, when 100 ml of SNC with 100 ppm was applied, emission of hydrogen sulfide gas was reduced rapidly during early 4 hours after the application of SNC. And, concentration of hydrogen sulfide gas was maintained below 20 ppm after 12 hours. For methane gas, t-test showed that there was no significance on the effect of its application for all applied concentrations of SNC. Therefore, it was concluded that the application of SNC on swine excreta had no effect on the emission reduction of $CH_4$.

Field Applicability of Low Temperature Thermal Desorption Equipment through Environmental Impact Analysis of Remediated Soil and Exhaust Gas (정화토양 및 배출가스의 환경적 특성 분석을 통한 저온열탈착장치의 현장 적용성 평가)

  • Oh, Cham-Teut;Yi, Yong-Min;Kim, Young-Soung;Jeon, Woo-Jin;Park, Gwang-Jin;Kim, Chi-Kyung;Sung, Ki-June;Chang, Yoon-Young;Kim, Guk-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.76-85
    • /
    • 2012
  • Geochemical and ecological properties of remediated soil and gas exhausted from a low-temperature thermal desorption (LTTD) process were analyzed to assess the environmental impact of LTTD treatment. Soil characteristics were examined with regard to the chemical (EC, CEC, and organic matter) and the ecological (dehydrogenase activity, germination rate of Brassica juncea, and growth of Eisenia andrei) properties. The exhaust gases were analyzed based on the Air Quality Act in Korea as well as volatile organic compounds (VOCs) and mixed odor. Level of organic Organic matter of the soil treated by LTTD process was slightly decreased compared to that of the original soil because the heating temperature ($200^{\circ}C$) and retention time (less than 15 minutes) were neither high nor long enough for the oxidation of organic matter. The LTTD process results in reducing TPH of the contaminated soil from $5,133{\pm}508$ mg/kg to $272{\pm}107$ mg/kg while preserving soil properties. Analysis results of the exhaust gases from the LTTD process satisfied discharge standard of Air Quality Law in Korea. Concentration of VOCs including acetaldehyde, propionaldehyde, butyraldehyde and valeraldehyde in circulation gas volatilized from contaminated soil were effectively reduced in the regenerative thermal oxidizer and all satisfied the legal standards. Showing ecologically improved properties of contaminated soil after LTTD process and environmentally tolerable impact of the exhaust gas, LTTD treatment of TPH-contaminated soil is an environmentally acceptable technology.

Preparation of Asymmetric PES Hollow Fiber Gas Separation Membranes and Their $CO_2/CH_4$ Separation Properties (비대칭구조의 폴리이서설폰 기체분리용 중공사막의 제조 및 이를 이용한 $CO_2/CH_4$ 분리특성)

  • Park, Sung-Ryul;Ahn, Hyo-Seong;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • Huge amount of $CH_4$ mixtures has been emitted from landfills and organic wastes via anaerobic digestion. The recovery of high purity $CH_4$ from these gases has two merits: reduction of green house gases and production of renewable fuels. Membrane technology based on polymeric materials can be used in this application. In this study, asymmetric gas separation hollow fiber membranes were fabricated to develop the membrane-based bio-gas purification process. Polyethersulfone (PES) was chosen as a polymer materials because of high $CO_2$ permeability of 3.4 barrer and $CO_2/CH_4$ selectivity of 50[1]. Acetone was used as a non-solvent additive because of its unique swelling power for PES and highly volatile character. The prepared PES hollow fiber showed excellent separation properties: 36 GPU of $CO_2$ permeance and 46 of $CO_2/CH_4$ selectivity at optimized preparation conditions: 9wt% acetone content, 10cm air-gap and 4wt% PDMS coating processes. With the PES hollow fiber membranes developed, mixed $CO_2/CH_4$ test was done by changing various operating conditions such as pressures and feed compositions to meet the highest recovery of CH4 with 95% purity. High $CH_4$ recovery of 58 wt% was observed at 10 atm feed pressure for the 50 vol% of $CO_2$ in $CO_2/CH_4$ mixture.

Synthesis of the Nano-sized SrAl2O4 Phosphors by Wet Processing and its Photoluminescence Properties (SrAl2O4계 축광재료의 습식공정에 의한 나노분말 합성 및 발광특성)

  • Kim, Jung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.477-481
    • /
    • 2008
  • $Eu^{2+}$ and $Dy^{3+}$ co-doped strontium aluminate, $SrAl_2O_4$ long phosphorescent phoshor was fabricated and its photoluminescence was characterized. The phosphor, $SrAl_2O_4:Eu^{2+},Dy^{3+}$ was synthesized by a coprecipitation in which metal salts of $Sr(NO_3)_2$, $Al(NO_3)_3{\cdot}9H_2O$, were dissolved in $(NH_4)_2CO_3$ solution with adding $Eu(NO_3)_3{\cdot}5H_2O$ and $Dy(NO_3)_3{\cdot}5H_2O$ as a activator and co-activator, respectively. The coprecipitated products were separated from solution, washed, and dried in a vacuum dry oven. The dried powders were then mixed with 3 wt% $B_2O_3$ as a flux and heated at $800{\sim}1400^{\circ}C$ for 3 h under the reducing ambient atmosphere of 95%Ar+$5%H_2$ gases. For the synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$, properties of photoluminescence such as emission, excitation and decay time were examined. The emission intensity increased as the annealing temperature increased and showed a maximum peak intensity at 510 nm with a broad band from $400{\sim}650\;nm$. Monitored at 520 nm, the excitation spectrum showed a maximum peak intensity at $315{\sim}320\;nm$ wavelength with a broad band from $200{\sim}500\;nm$ wavelength. The decay time of $SrAl_2O_4:Eu^{2+},Dy^{3+}$ increased as the annealing temperature increased.

Current situation and future prospects for beef production in Europe - A review

  • Hocquette, Jean-Francois;Ellies-Oury, Marie-Pierre;Lherm, Michel;Pineau, Christele;Deblitz, Claus;Farmer, Linda
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.1017-1035
    • /
    • 2018
  • The European Union (EU) is the world's third largest producer of beef. This contributes to the economy, rural development, social life, culture and gastronomy of Europe. The diversity of breeds, animal types (cows, bulls, steers, heifers) and farming systems (intensive, extensive on permanent or temporary pastures, mixed, breeders, feeders, etc) is a strength, and a weakness as the industry is often fragmented and poorly connected. There are also societal concerns regarding animal welfare and environmental issues, despite some positive environmental impacts of farming systems. The EU is amongst the most efficient for beef production as demonstrated by a relative low production of greenhouse gases. Due to regional differences in terms of climate, pasture availability, livestock practices and farms characteristics, productivity and incomes of beef producers vary widely across regions, being among the lowest of the agricultural systems. The beef industry is facing unprecedented challenges related to animal welfare, environmental impact, origin, authenticity, nutritional benefits and eating quality of beef. These may affect the whole industry, especially its farmers. It is therefore essential to bring the beef industry together to spread best practice and better exploit research to maintain and develop an economically viable and sustainable beef industry. Meeting consumers' expectations may be achieved by a better prediction of beef palatability using a modelling approach, such as in Australia. There is a need for accurate information and dissemination on the benefits and issues of beef for human health and for environmental impact. A better objective description of goods and services derived from livestock farming is also required. Putting into practice "agroecology" and organic farming principles are other potential avenues for the future. Different future scenarios can be written depending on the major driving forces, notably meat consumption, climate change, environmental policies and future organization of the supply chain.