• 제목/요약/키워드: Mixed Convection Parameter

검색결과 21건 처리시간 0.022초

경사진 채널밑면에 탑재된 모사모듈의 혼합대류열전달 특성 연구 (A study on the mixed-convection heat transfer characteristics of a simulated module on the bottom in the inclined channel)

  • 유갑종;이진호;장준영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.433-439
    • /
    • 2001
  • An experimental study was carried out on the characteristics of the mixed-convection heat transfer from a protruding heat source module which had uniform heat flux and was located on a flat plate in the inclined channel. The effects of the inclined channel(${\varphi}=0{\sim}90^{\circ}$) was studied for the input power($Q=3,\;7W$) and inlet air velocities($V_{i}=0.1{\sim}0.9m/s$). Experimental results indicate that the input power was most effective parameter on the temperature differences between inlet air and module. The effects of the inclined angle was negligible when the inlet velocities were above 0.5m/s and 0.9m/s at Q = 3W, 7W respectively. As the inclined angle of the channel increases, the temperatures of the module are decreased. So we obtained the best condition on the adiabatic board at the vertical channel.

  • PDF

쉴리렌 간섭계에 의한 사각덕트내 후향계단후 유동에서의 혼합대류 전열에 관한 연구 (A Study on Mixed Convection Heat Transfer in Duct Flow behind a Backward-Facing Step by Using Schlieren Interferometer)

  • 백병준;박복춘;김진택
    • 설비공학논문집
    • /
    • 제6권1호
    • /
    • pp.1-10
    • /
    • 1994
  • The flow and heat transfer characteristics behind a backward facing step located in a vertical channel has been studied. In this study, the numerical prediction has been performed by solving the Navier-Stokes equation and energy equation simultaneously with the SIMPLE algorithm embedied in TEACH code. Local heat flux was measured by using Schlieren Interferometer. The flow visualization was performed using the cylindrical lens and the laser beam that is scattered by the supplied glycerine particles. The velocity and temperature distributions, recirculation region, reattachment length, and local heat flux are obtained under the various parameters to investigate the buoyancy effect on the flow and heat transfer characteristics behind the step.

  • PDF

ACRT에 의한 초크랄스키 대류진동 제어 (Control of oscillatory Czochralski convection by ACRT)

  • 최정일;성형진
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2397-2408
    • /
    • 1996
  • A numerical study was made of the control of transient oscillatory flow modes in Czochralski convection. The reduction of temperature oscillation was achieved by changing the rotation rate of crystal rod, .OMEGA.$_{S}$=.OMEG $A_{S0}$(1+ $A_{S}$sin(2.pi. $f_{S}$/ $t_{p}$t)). The temporal behavior of oscillation flow was scrutinized over broad ranges of two parameters, i.e., the rotation amplitude( $A_{S}$.leq.0.5) and the nondimensional frequency (0.9.leq. $f_{S}$.leq.1.5). The mixed convection parameter was ranged 0.225.leq.Ra/PrR $e^{2}$.leq.0.929, which encompassed the buoyancy-and forced-dominant convection regimes. Computational results revealed that the temperature oscillations could be reduced effectively by a proper adjustment of the control parameters. The uniformity of temperature distribution near the crystal rod was examined. The control of oscillatory flow modes was also made for a realistic, low value of Pr.

3차원 채널 밑면에 탑재된 모듈로부터의 혼합대류열전달 (Mixed Convection Transport from a Module on the Bottom Surface of Three Dimensional Channel)

  • 이진호;박상희;유갑종;방창훈
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.632-639
    • /
    • 2000
  • Conjugate heat transfer from a heat generating module ($31{\times}31{\times}7mm^3$) bonded through the module support on the floor of a parallel-plate channel(20mm high, 400mm wide, and 800mm long) to mixed convective air flow(0.2${\sim}$0.9m/s) is studied experimentally. The input power to the module is changed in a range 1.0${\sim}$4.5W, the floor thickness 0.2${\sim}$5mm, and the thermal resistance of module support, Rc:=0.06, 1.03 and 82.0K/W. Thermal conductance(Uc) of the board and convective thermal conductance($U_A$) from the module were derived, and the effect of V; Rc and t on Uc was investigated. It is found that the conjugate conductance (Uc) and the conductive heat transfer ratio ($Q_B$/Q) depend on the thermal resistance of the module support, the air velocity and the board thickness. The change of the module support resistance and the board thickness helps to elucidate the relative significance of heat transfer paths through the module support, the board, and from the board surface to the air. Additional information is investigated about the dependence of the heat transfer rate on the mixed convection parameter.

유동변수 파라미터에 의한 혼합 내-외재적 열-유동장 수치해석 방법 연구 (A Study on Flowfield-Dependent Mixed Explicit-Implicit Method in Heat and Fluid Dynamics Problems)

  • 문수연;송창현;이충원
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.989-996
    • /
    • 2001
  • High-speed and low-speed flows are simulated numerically by flowfield-dependent mixed explicit-implicit (FDMEI) method. This algorithm depends on implicitness parameters of convection, diffusion, diffusion gradients, and source terms which are calculated from the changes of local Mach, Reynolds, Peclet, and Damkohler numbers between adjacent nodes. Convection phenomena or shock waves are resolved from Mach number-dependent implicitness parameters whereas diffusion or viscous actions are simulated by Reynolds number or Peclet number-dependent implicitness parameters. Fluctuation components of all variables are properly accommodated spatially and temporally in the FDMEI procedure. To illustrate, some benchmark example problems are presented for comparisons of the FDMEI results with other available data. These results appear to be encouraging and point toward the need for further investigations of the FDMEI theory.

HYBRID DIFFERENCE SCHEMES FOR SINGULARLY PERTURBED PROBLEM OF MIXED TYPE WITH DISCONTINUOUS SOURCE TERM

  • Priyadharshini, R. Mythili;Ramanujam, N.;Valanarasu, T.
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1035-1054
    • /
    • 2010
  • We consider a mixed type singularly perturbed one dimensional elliptic problem with discontinuous source term. The domain under consideration is partitioned into two subdomains. A convection-diffusion and a reaction-diffusion type equations are posed on the first and second subdomains respectively. Two hybrid difference schemes on Shishkin mesh are constructed and we prove that the schemes are almost second order convergence in the maximum norm independent of the diffusion parameter. Error bounds for the numerical solution and its numerical derivative are established. Numerical results are presented which support the theoretical results.

INFLUENCE OF HALL CURRENT AND HEAT SOURCE ON MHD FLOW OF A ROTATING FLUID IN A PARALLEL POROUS PLATE CHANNEL

  • VENKATESWARLU, M.;UPENDER REDDY, G.;VENKATA LAKSHMI, D.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권4호
    • /
    • pp.217-239
    • /
    • 2018
  • This paper examined the MHD and thermal behavior of unsteady mixed convection flow of a rotating fluid in a porous parallel plate channel in the presence of Hall current and heat source. The exact solutions of the concentration, energy and momentum equations are obtained. The influence of each governing parameter on non dimensional velocity, temperature, concentration, skin friction coefficient, rate of heat transfer and rate of mass transfer at the porous parallel plate channel surfaces is discussed. During the course of numerical computation, it is observed that as Hall current parameter and Soret number at the porous channel surfaces increases, the primary and secondary velocity profiles are increases while the primary and secondary skin friction coefficients are increases at the cold wall and decreases at the heated wall. In particular, it is noticed that a reverse trend in case of heat source parameter.

Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation

  • Zeeshan, A.;Majeed, A.
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.153-158
    • /
    • 2016
  • This paper aims to discuss the Non Darcy boundary layer flow of non-conducting viscous fluid with magnetic ferroparticles over a permeable linearly stretching surface with ohmic dissipation and mixed convective heat transfer. A magnetic dipole is applied "a" distance below the surface of stretching sheet. The governing equations are modeled. Similarity transformation is used to convert the system of partial differential equations to a system of non-linear but ordinary differential equations. The ODEs are solved numerically. The effects of sundry parameters on the flow properties like velocity, pressure, skin-friction coefficient and Nusselt number are presented. It is deduced the frictional resistance of Lorentz force decreases with stronger electric field and the trend reverses for temperature. Skin friction coefficient increase with increase in ferromagnetic interaction parameter. Whereas, Nusselt number decrease.

결정봉 회전 가속화 기법에 의한 초크랄스키 결정 성장 (Czochralski crystal growth by the accelerated crystal rotation technique)

  • 김승태;최정일;성형진
    • 한국결정성장학회지
    • /
    • 제8권1호
    • /
    • pp.18-28
    • /
    • 1998
  • 초크랄스키 대류에서의 온도진동 억제에 대한 실험 및 수치해석 연구가 수행되었다. 결정봉 회전 가속화기법을 초크랄스키 성장에 적용시키기 위해 결정봉 회전가속도를($\Omega=\Omega_0(1+A sin 2{\pi}ft/t_p)$)로 변화시켰다. 여기서 A는 가진증율, f는 가진주파수인자를 나타낸다. 제어이전에 나타나는 고유한 온도진동 주기 ($t_p$)를 근거하여, 무차원 혼합대류인자($0.217{\leq}Ra/PrRe^2{\leq}1.658$)에 온도진동 감소율을 조사하였다. 또한 제어인자 A와 f에 대한 효과를 조사하였다. 용융유동 내의 온도진동 억제 현상을 이해하기 위해 자오면상에 나타나는 온도 및 와도분포가 면밀히 검토되었다.

  • PDF

초크랄스키 공정에서의 천이예측 (Prediction of transition in Czochralski process)

  • 최정일;성형진
    • 한국결정성장학회지
    • /
    • 제7권1호
    • /
    • pp.108-116
    • /
    • 1997
  • 초크랄스키 대류에서의 동적 천이과정에 대한 실험 및 수치해석 연구가 수행되었다. 결정의 회전에 의한 강제대류와 결정/용융 경계면과 도가니 외벽간의 온도차에 의한 자연대류의 상호작용에 의해서 결정되어지는 유동구조와 천이현상을 해석하기 위해 도가니 내의 온도진동 특성을 시간주기($t_p$)와 진동크기($Delta\theta$)에 의해 검토하였다. 혼합대류인자에 따른 천이현상의 체계적인 연구가 수행되었으며($0.134\le Ra/PrRe^2 \le3.804$), 천이현상에 대한 Pr수의 영향을 조사하였다. 천이 메카니즘을 이해하기 위해, 자오면상의 온도장과 중심축에서의 축방향 속도에 대한 해석이 부가되었다.

  • PDF