• Title/Summary/Keyword: Mix-Method

Search Result 774, Processing Time 0.024 seconds

Strength Properties and Determination Method of Mix Proportion Factor of Latex Modified Concrete (라텍스개질 콘크리트의(LMC)의 강도특성 및 배합인자 결정방법)

  • Park, Sung-Ki;Won, Jong-Pil;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.39-50
    • /
    • 2008
  • This study are decided the mix proportion method of latex modified concrete for agricultural concrete structures from the results of workability and strength test with mix proportion factor. For mix proportion factor, this study are selected the water-cement ratio, unit cement amount and latex content. Also, this study were performed the slump, compressive strength test and microstructure analysis using the scanning electron microscope(SEM). The strength and slump of LMC are dependent with unit cement amount, latex content, and water-cement ratio. Especially, the strength of LMC are not controlled by single mix proportion factor but effected by combined mix proportion factor. Microstructure investigation are showed the LMC are reduced the internal pore volume and enhanced the transition zone between cement paste and aggregate interface. This effect get by consist of latex films in the concrete. Also, this study were recommended the mix proportion method for LMC. These mix proportions method are estimated the mix design for satisfied the target performance which are applied the agricultural concrete structure.

Study on the Mix Design Method and the Mechanical Proerties of High-Strenght Lightweight Concrete (고강도-경량콘크리트의 배합설계 방안 및 역학적 특성에 관한 연구)

  • Gang, Hun
    • 레미콘
    • /
    • no.7 s.72
    • /
    • pp.29-41
    • /
    • 2002
  • The purpose of this study is to investigarte the mix design method and the mechanical properties of High stength Lightweight Concrete (HSLC). In the experment, concrete mixing was conducted to select the optimum mix design for HSLC in laboratory. Also, concrete mixing in ready mix design. As a result, it is possible to establish the mix design of HSLC according to the using these experimental results ;the estimate equation for unit weight of HSLC. the relationship between W/C and compressive strength of HSLC and the fluidity of HSLC in the view of workability

  • PDF

Investigation of Mix Design Method in Concrete Mixed with SSPCM Based on Mechanical Behaviors (SSPCM 혼입 콘크리트의 역학적 성능 기반 배합설계기법 연구)

  • Min, Hae-Won;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • As energy consumption of building and the reduction of carbon dioxide emissions have been emphasized, phase change materials(PCM) have been introduced as building materials due to its high heat storage performance. Using shape-stabilizing technique, octadecane/xGnP shape-stabilized PCM(SSPCM) can prevent leakage and improve heat storage performance. The objectives of this study are to propose mix design method of concrete mixed with SSPCM and to evaluate mechanical behaviors of the concrete mixed with SSPCM manufactured according to the proposed mix design. Based on the previously reported material test result, the existing mix design of plain concrete(Concrete standard specification, 2009) is modified to consider reduction of strength in concrete due to the addition of SSPCM. To verify the proposed mix design, specimens are fabricated according to the proposed mix design and axial strength tests and three-point loading tests are performed. Test results show that compressive strengths of the tested specimens reach the designed strength even when two different mix ratios of SSPCM are used. From three-point loading tests, flexural stresses decrease as mix ratio of SSPCM increases.

Generation Mix Analysis based on the Screening Curve and WASP-IV Techniques (탐색곡선법과 WASP-IV 모형을 이용한 국내 적정 전원구성 분석)

  • Jang, Se-Hwan;Park, Jong-Bae;Roh, Jae-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.534-541
    • /
    • 2012
  • This paper tries to elicit an optimal generation mix of Korea. Two approaches, using the screening curve method and taking advantage of a generation expansion planning tool, WASP-IV, are applied in getting the mix. The data used in this study is based on the 5th basic plan for long-term electricity supply and demand. The Load Duration Curve, that is needed for applying Screening Curve Method(SCM), is made based on the load profile in 2010. In our using SCM, the nuclear plant's operation characteristic, carbon emission cost and spinning reserve are considered. In using WASP-IV to get the adequate generation mix, the base and target demand forecasts in the 5th basic plan are used and the carbon emission cost is also considered. In this paper, It introduces the domestic adequacy generation mix in 2024 though SCM and WASP-IV.

A Study on a Steel Slag Asphalt Concrete Design Method Considering Density and Absorption (밀도와 흡수율을 고려한 제강슬래그 아스팔트 콘크리트의 배합설계 방법 연구)

  • Kim, Kyungnam;Jo, Shinheang;Kim, Nakseok;Kim, Hyunwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • PURPOSES : This paper presents a mix design method for using steel slag as an aggregate for asphalt mixtures. METHODS : Steel slag has a different density and absorption rate than natural aggregates. The asphalt content was calculated according to the steel slag characteristics, and the formula for aggregate-gradation correction was presented. RESULTS : The asphalt mix was designed using the proposed equations. Using the proposed mix design method, it was possible to design the asphalt mixture according to the target-usage amount of the recycled aggregate. CONCLUSIONS : The suggested method can be used for asphalt mix design using aggregates with different densities and absorption rates. It is expected to contribute to quality improvement by ensuring accurate calculation of mixing ratios for steel slag asphalt mixtures.

A Study of the Welfare Mix in Korea (한국의 복지혼합에 관한 연구)

  • Shin, Dong-Myeon
    • Korean Journal of Social Welfare
    • /
    • v.45
    • /
    • pp.220-249
    • /
    • 2001
  • In order to understand the provision of social welfare in Korea, this study puts forward a method to measure and tracks the welfare mix, and applies the method to Korea. This is the goal of this study, which is in three parts. First, I critically review the concept of welfare pluralism and develop the welfare mix model, Second, I present a methodology and technique for measuring and systematically comparing the components of the welfare mix. Third, I examine the roles of five welfare providers including state, market, non-profit organization, enterprise and family in the welfare mix of Korea. This study argues that the welfare mix in Korea has some characteristics of 'residual state, expanded market, negligible voluntary sector, and protective family'. The state in Korea has played a relatively little role in the provision of social welfare, enforcing most Koreans being with a meagre social protection. Thus, most of the 'left' needs for social welfare has to be met in the private sector composed of market and enterprises. In addition, in a situation that self/mutual help through family or community is encouraged, the family has played an important role in the welfare mix. But the role of voluntary sector in the welfare mix has remained negligible. Consequently, the characteristics of the welfare mix in Korea can be best described by a welfare society rather than a welfare state.

  • PDF

Mix design of CSG method (CSG 공법적용을 위한 배합설계기법)

  • Kim, Ki-Young;Jeon, Je-Sung;Cho, Sung-Eun;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.293-301
    • /
    • 2005
  • The CSG(Cemented Sand and Gravel) method is construction technique using as raw materials earth and gravel generated from a local construction site, mixing them with cement and rolling with vibration rollers. Recently, The use of this method for cofferdam and large dam is gradually increasing in Japan. The purpose of an CSG mix design is to develop project specific properties to meet the structure design requirements. But uniform mix design of CSG method has not yet been established. The experience of practitioners from the geotechnical and concrete disciplines has given rise to two genernal approaches to mix design for CSG. This paper reports the concept of how to set the mix design according to modified Proctor compaction test process and the test results on properties such as compaction, compressive strength and modulus of elasticity that obtained by unconfined compression test.

  • PDF

A Study on Design of Mix Proportion for Concrete using Recycled Aggregate (순환골재를 이용한 콘크리트의 배합설계에 관한 연구)

  • Park, Won-Jun;Noguchi, Takafumi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.101-103
    • /
    • 2011
  • Various desired performances of concrete cannot be always obtained by current conventional mix proportion methods for recycled aggregate concrete (RAC). This paper suggests a new design method of mix proportion for RAC to reduce the number of trial mixes using genetic algorithm (GA) which has been an optimization technique to solve the multi-object problem. In mix design method by GA, several fitness functions for the required properties of concrete, i.e., slump, strength, price, and carbonation speed coefficient were considered based on conventional data or fitness function. As a result, various optimum mix proportions for RAC that meet required performances were obtained and the risk evaluation was also conducted for selected mixtures.

  • PDF

The Study of Asphalt Concrete Mixture Design Using Maximum Density Theory (최대밀도이론을 이용한 아스팔트 혼합물의 배합설계에 관한 연구)

  • Lee, Seung-Han;Park, Hyun-Myo;Jung, Yong-Wook;Jang, Seck-Soo;Kim, Jang-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.525-528
    • /
    • 2005
  • This study determines the best composite grade to minimize the void of aggregate mixture based on the maximum density theory in an attempt to suggest a mix proportion method design for asphalt mixtures. Study results show that the grading curve with the maximum mass per unit capacity of each aggregate mixture satisfied the KS standards and the optimum AP content to meet the optimal asphalt mixture void rate of 4$\%$ was 5.7$\%$, less than the optimum AP content of 6.5$\%$ suggested in the Marshal mix proportion method design. At the same time, the asphalt mixture produced based upon the suggested mix proportion method had a flow value 17$\%$ lower than that of asphalt mixture produced according to the Marshal method, while its density was greater by 0.06$\~$0.09. This suggests that the introduced mix proportion method design helps to improve the shape flexibility and crack-resistance of asphalt concrete.

  • PDF

Mix Design of High Performance Concrete (고성능콘크리트의 배합설계)

  • Jung Yong-Wook;Lee Seung-Han;Yun Yong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.73-76
    • /
    • 2005
  • This study aims to suggest a simple and convenient design for a mix proportion method for high performance concrete by determining the optimum fine aggregate ratio and minimum binder content based on the maximum density theory. The mix design method introduced in this study adopted the optimum fine aggregate ratio with a minimum void and binder content higher than the minimum binder content level. The research results reveal that the method helps to reduce trial and error in the mixing process and is a convenient way of producing high performance concrete with self filler ability. In an experiment based on the mix proportion method, when aggregate with the fine aggregation ratio of 41$\%$ was used, the minimum binder content of high performance concrete was 470kg/$m^{3}$ and maximum aggregate capacity was $0.657m^{3}/m^{3}$. In addition, in mixing high performance concrete, the optimal slump flow to meet filler ability was 65$\pm$5cm, V load flow speed ranged from 0.5 to 1.5.

  • PDF