• Title/Summary/Keyword: Mix Temperature

Search Result 363, Processing Time 0.027 seconds

Construction and Evaluation of Thermal Crack Stability about Bottom Slab of the #219 LNG Underground Tank in Incheon (인천 LNG 지하탱크 #219 Bottom Slab시공 및 온도균열 안정성 평가)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Park, Jong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.689-692
    • /
    • 2006
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in massive concrete structures. In order to control the temperature crack of massive concrete, the selection of appropriate materials like low heat cement, mixture materials, etc. is essential. In tills study, mix proportion using low heat portland cement and lime stone powder was designed and the best mix proportion, B-1, was selected. When bottom slab of the #219 LNG tank in Incheon was constructed, concrete temperature was measured. And thermal stress was analyzed about bottom slab of the LNG tank. As results of the thermal analysis, crack index was 1.60 in bottom slab and satisfied with construction specifications(over 1.0).

  • PDF

A Study on Characteristic of Warm Mix Asphalt (중온형 아스팔트 콘크리트 특성연구)

  • Jo, Shin-Haeng;Jun, Soon-Je;Jeun, Jun-Young;Ryu, Deug-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.313-316
    • /
    • 2008
  • Temperature reduction in the manufacturing of asphalt mixtures is highly desirable from a number of aspects. Reduced fumes and emissions, and reduced energy consumption, are important environmental reasons to continue pursuing the goal of temperature reduction. There are important construction and performance advantages as well. For instance, improved workability results in better compaction; lower production and placement temperatures may improve prospects for cold weather paving; and lower temperatures will result in less binder aging and possibly better cracking resistance. The performance of WMA is not to be satisfied though there are various advantages. Therefore, more research is needed on a number of issues

  • PDF

Manufacture of Apparatus for Coolant Mix Performance Test (냉각제 혼합성능 시험용 장치의 제작)

  • Ku, Hyoun-Kon;Bae, Young-Gwan;Kim, Jin-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.73-78
    • /
    • 2022
  • The test apparatus that can be protected from the high-temperature combustion flame and coolant injection was successfully manufactured. In this study, the coolant-injection module had a controllable consistent pressure, and the entire combustion module was protected using a nonflammable composite liner. Every flange was designed in accordance with the DIN standard, and the entire body of the module was designed in accordance with the EN 13445 code. Additionally, the hydraulic pressure test was performed in accordance with the 2014/68/EU directive and EN 13445 standard. Finally, after manufacturing, performance tests (such as pressure tests) were conducted to verify the reliability and safety.

Performance Evaluation of 100 % RAP Asphalt Mixtures using different types of Rapid-Setting Polymer-Modified Asphalt Emulsion for Spray Injection Application (속경성 바인더 유형에 따른 긴급보수용 스프레이 패칭 상온 재활용 아스팔트 혼합물(RAP)의 성능 평가)

  • Kim, Doo Yeol;Jeon, Ji Seong;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • PURPOSES : The purpose of this study was to determine the optimum mix design of the content of 100 % reclaimed asphalt pavement (RAP) for spray injection application with different binder types. METHODS : Literature review revealed that spray injection method is the one of the efficient and economical methods for repairing a small defective area on an asphalt pavement. The Rapid-Setting Polymer modified asphalt mixtures using two types of rapid setting polymers-asphalt emulsion and a quick setting polymer asphalt emulsion-were subjected to the following tests to determine optimum mix designs and for performance comparison: 1) Marshall stability test, 2) Retained stability test, 3) Wet track abrasion test, and 4) Dynamic stability test. RESULTS and CONCLUSIONS : Type A, B, and C emulsions were tested with different mix designs using RAP aggregates, to compare the performances and determine the optimum mix design. Performance of mixtures with Type A emulsion exceeded that of mixtures with Type B and C emulsion in all aspects. In particular, Type A binder demonstrated the highest performance for WTAT at low temperature. It demonstrated the practicality of using Type A mixture during the cold season. Furthers studies are to be performed to verify the optimum mix design for machine application. Differences in optimum mix designs for machine application and lab application will be corrected through field tests.

An Experimental Study on Concrete Strength Prediction by Maturity Method (성숙도를 고려한 콘크리트의 강도예측에 관한 실험적 연구)

  • 오병환;이명규;김광수;전세진;김의성;김상섭;최인혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.77-82
    • /
    • 1994
  • The maturity concept proposes that concrete of the same mix at the same maturity has the same strength, whatever combination of temperature and time makes up that maturity. Maturity is the integral of time and temperature of concrete above a datum temperature. Tests are conducted in order to determine a datum temperature and to measure compressive strengths and maturity of test specimens. This study also proposes some appropriate functions to represent the relationship between maturity and strength development.

  • PDF

Optimum Mix Design of Alkali-Activated Cement Mortar Using Bottom Ash as Binder (바텀애쉬를 결합재로 사용한 알칼리 활성화 시멘트 모르타르의 최적배합에 관한 연구)

  • Kang, Su-Tae;Ryu, Gum-Sung;Koh, Kyoung-Taek;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.487-494
    • /
    • 2011
  • In this research, the possibility of using bottom ash as a binder for the alkali-activated cement mortar is studied. Several experiments were performed to investigate the variation of the material properties according to the mix proportion. In the experimental program, the flowability and compressive strength were evaluated for various values of water/ash ratio, activator/ash ratio, sodium silicate to sodium hydroxide ratio, curing temperature, and the fineness of bottom ash as the main variables. The experimental results showed that high strength of 40 MPa or greater could be achieved in $60^{\circ}C$ high temperature curing condition with proper flowability. For $20^{\circ}C$ ambient temperature curing, the 28 days compressive strength of approximately 30MPa could be obtained although the early-age strength development was very slow. Based on the results, the range of optimized mix design of bottom-ash based alkali-activated cement mortar was suggested. In addition, using the artificial neural network analysis, the flowability and compressive strength were predicted with the difference in the mix proportion of the bottom-ash based alkali-activated cement mortar.

Comparison of Bacterial Community Changes in Fermenting Kimchi at Two Different Temperatures Using a Denaturing Gradient Gel Electrophoresis Analysis

  • Yeun, Hong;Yang, Hee-Seok;Chang, Hae-Choon;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.76-84
    • /
    • 2013
  • A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique followed by sequencing of the 16S rDNA fragments eluted from the bands of interest on denaturing gradient gels was used to monitor changes in the bacterial microflora of two commercial kimchi, salted cabbage, and ingredient mix samples during 30 days of fermentation at $4^{\circ}C$ and $10^{\circ}C$. Leuconostoc (Lc.) was the dominant lactic acid bacteria (LAB) over Lactobacillus (Lb.) species at $4^{\circ}C$. Weissella confusa was detected in the ingredient mix and also in kimchi samples throughout fermentation in both samples at $4^{\circ}C$ and $10^{\circ}C$. Lc. gelidum was detected as the dominant LAB at $4^{\circ}C$ in both samples. The temperature affected the LAB profile of kimchi by varing the pH, which was primarily caused by the temperature-dependent competition among different LAB species in kimchi. At $4^{\circ}C$, the sample variations in pH and titratable acidity were more conspicuous owing to the delayed growth of LAB. Temperature affected only initial decreases in pH and initial increases in viable cell counts, but affected both the initial increases and final values of titratable acidity. The initial microflora in the kimchi sample was probably determined by the microflora of the ingredient mix, not by that of the salted cabbage. The microbial distributions in the samples used in this study resembled across the different kimchi samples and the different fermentation temperatures as the numbers of LAB increased and titratable acidity decreased.

Comparison and Analysis on the Process of Master Curve Determination for Hot Mix Asphalt (아스팔트 혼합물의 마스터곡선 작성 방법의 비교 및 분석)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4199-4204
    • /
    • 2011
  • The dynamic modulus of hot mix asphalt is one of the important indicators to evaluate the durability and performance of asphalt pavement. In resent, the dynamic modulus is suggested by a key property of asphalt pavement design and analysis in AASHTO 2002 Design Guide and Korean Pavement Research Project(KPRP). Master curve from laboratory test results should be needed for pavement design and analysis. The process to get the master curve is standardized. But, there are some setup and testing error at low temperature(-$10^{\circ}C$) and high temperature ($55^{\circ}C$). In this paper, a simplified process which is used 3 testing temperatures (5, 21, 40) is adopted to get the master curve. Comparison was carried out for standard process and simplified process. The suggested process can be used to get the master curve of asphalt pavement, even though some difference was shown at high temperature.

Method of Decreasing Cracking Index by Different Mix Conditions for Separated Placement and its Field Application (콘크리트 배합요인별 상·하부 분리타설에 의한 수화열 균열지수 저감방안 및 현장적용)

  • Kim, Min-Ho;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.292-298
    • /
    • 2016
  • In this research, considering the practical situation of separated placing method for mass concrete structure, an efficient method of controlling the heat of hydration is suggested by comparing between the simulated values and actual measurements conducted with the optimum mix design obtained from the various mix conditions with different types and amount of supplementary cementitious materials(SCMs). As the result of the research, firstly, the optimum mix designs for top and bottom layers were determined by Midas gen as OPC to FA of 85 to 15, and OPC to FA to BS of 50 to 20 to 30, respectively. The concrete mixtures prepared with the mix designs determined from the simulation satisfied the target performance range in slump, air content and compressive strength. Additionally, from temperature measurement for the actual mass concrete placed during spring, the maximum temperature difference between surface and core was about $10^{\circ}C$ with 59 and $49^{\circ}C$ for top and bottom layers, respectively, and 1.4 of cracking index was obtained. Therefore, considering the practical conditions of mass concrete construction, it is considered that the different heat of hydration method using different mix designs with SCMs can be an efficient method for controlling thermal cracking and settling cracking of mass concrete.

Comparison and Evaluation of Dynamic Modulus of Hot Mix Asphalt with Different Shift Factors (전이함수 결정법에 따른 아스팔트 혼합물의 동탄성계수 비교평가)

  • Kim, Hyun-Oh;Lee, Kwan-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.49-61
    • /
    • 2005
  • The dynamic modulus of hot mix asphalt can be determined according to the different combinations of testing temperature and loading frequency. The superposition rule is adapted to get the master curve of dynamic modulus for each hot mix asphalt. There are couple of different methods to get the shift factor which is a key for making the master curve. In this paper, Arrehnius, 2002 AASHTO, and experimental method was employed to get the master curve. Evaluation of dynamic modulus for 25mm base course of hot mix asphalt with granite aggregate and two asphalt binders(AP-3 and AP-5) was carried out. Superpave Level 1 Mix Design with gyratory compactor was adopted to determine the optimum asphalt binder content(OAC) and the measured ranges of OAC were between 4.1% and 4.4%. UTM was used for laboratory test. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature(-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies(0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The shift factor and activation energy for determination of master curve were calculated.

  • PDF