Browse > Article
http://dx.doi.org/10.4014/jmb.1210.10002

Comparison of Bacterial Community Changes in Fermenting Kimchi at Two Different Temperatures Using a Denaturing Gradient Gel Electrophoresis Analysis  

Yeun, Hong (Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University)
Yang, Hee-Seok (Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University)
Chang, Hae-Choon (Department of Food and Nutrition, Chosun University)
Kim, Hae-Yeong (Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.1, 2013 , pp. 76-84 More about this Journal
Abstract
A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique followed by sequencing of the 16S rDNA fragments eluted from the bands of interest on denaturing gradient gels was used to monitor changes in the bacterial microflora of two commercial kimchi, salted cabbage, and ingredient mix samples during 30 days of fermentation at $4^{\circ}C$ and $10^{\circ}C$. Leuconostoc (Lc.) was the dominant lactic acid bacteria (LAB) over Lactobacillus (Lb.) species at $4^{\circ}C$. Weissella confusa was detected in the ingredient mix and also in kimchi samples throughout fermentation in both samples at $4^{\circ}C$ and $10^{\circ}C$. Lc. gelidum was detected as the dominant LAB at $4^{\circ}C$ in both samples. The temperature affected the LAB profile of kimchi by varing the pH, which was primarily caused by the temperature-dependent competition among different LAB species in kimchi. At $4^{\circ}C$, the sample variations in pH and titratable acidity were more conspicuous owing to the delayed growth of LAB. Temperature affected only initial decreases in pH and initial increases in viable cell counts, but affected both the initial increases and final values of titratable acidity. The initial microflora in the kimchi sample was probably determined by the microflora of the ingredient mix, not by that of the salted cabbage. The microbial distributions in the samples used in this study resembled across the different kimchi samples and the different fermentation temperatures as the numbers of LAB increased and titratable acidity decreased.
Keywords
Bacterial community; PCR-DGGE; kimchi; lactic acid bacteria;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Park, J. A., G. Y. Heo, J. S. Lee, Y. J. Oh, B. Y. Kim, T. I. Mheen, et al. 2003. Change of microbial communities in kimchi fermentation at low temperature. Korean J. Microbiol. 39: 45-50
2 Park, J. M., J. H. Shin, D. W. Lee, J. C. Song, H. J. Suh, U. J. Chang, and J. M. Kim. 2010. Identification of the lactic acid bacteria in kimchi according to initial and over-ripened fermentation using PCR and 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 19: 541-546.   DOI   ScienceOn
3 Shaw, B. G. and C. D. Harding. 1989. Leuconostoc gelidum sp. nov. and Leuconostoc carnosum sp. nov. from chill-stored meats. Int. J. Syst. Bacteriol. 39: 217-223.   DOI
4 Shin, D. H., M. S. Kim, J. S. Han, D. K. Lim, and W. S. Park. 1996. Changes of chemical composition and microflora in commercial kimchi. Korean J. Food Sci. Technol. 28: 137-145.
5 Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. W. H. Freeman, San Francisco, California, USA.
6 So, M. H. and Y. S. Lee. 1997. Influences of cultural temperature on growth rates of lactic acid bacteria isolated from kimchi. Korean J. Food Nutr. 10: 110-116.
7 So, M. H., Y. S. Lee, H. S. Kim, E. J. Cho, and M. J. Yea. 1996. An influence of salt concentrations on growth rates of lactic acid bacteria isolated from kimchi. Korean J. Food Nutr. 9: 341-347.
8 Song, B. K., M. M. Clyde, R. Wickneswari, and M. N. Normah. 2000. Genetic relatedness among Lansium domesticum accessions using RAPD markers. Ann. Bot. 86: 299-307.   DOI   ScienceOn
9 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST; a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.   DOI   ScienceOn
10 Björkroth, K. J., P. Vandamme, and H. J. Korkeala. 1998. Identification and characterization of Leuconostoc carnosum, associated with production and spoilage of vacuum-packaged, sliced, cooked ham. Appl. Environ. Microbiol. 64: 3313-3319.
11 Bjorkroth, K. J., R. Geisen, U. Schillinger, N. Weiss, P. De Vos, W. H. Holzapfel, et al. 2000. Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomatomarinated broiler meat strips packaged under modified-atmosphere conditions. Appl. Environ. Microbiol. 66: 3764-3772.   DOI   ScienceOn
12 Chung, H. K., K. M. Yeo, and M. H. Kim. 1996. Kinetic modeling for quality prediction during kimchi fermentation. J. Food Sci. Nutr. 1: 41-45.
13 Chang, H. W., K. H. Kim, Y. D. Nam, S. W. Roh, M. S. Kim, C. O. Jeon, and J. W. Bae. 2008. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126: 159-166.   DOI   ScienceOn
14 Jung, J. Y., S. H. Lee, H. J. Lee, H. Y. Seo, W. S. Park, and C. O. Jeon. 2012. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 153: 378-387.   DOI   ScienceOn
15 Cho, J. H., D. Y. Lee, C. N. Yang, J. I. Jeon, J. H. Kim, and H. U. Han. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257: 262-267   DOI   ScienceOn
16 Hamasaki, Y., M. Ayaki, H. Fuchu, M. Sugiyama, and H. Morita. 2003. Behavior of psychrotrophic lactic acid bacteria isolated from spoiling cooked meat products. Appl. Environ. Microbiol. 69: 3668-3671.   DOI
17 Jung, H. J., Y. Hong, H. S. Yang, H. C. Chang, and H. Y. Kim. 2012. Distribution of lactic acid bacteria in garlic (Allium sativum) and green onion (Allium fistulosum) using SDS-PAGE whole cell protein pattern comparison and 16S rRNA gene sequence analysis. 2012. Food Sci. Biotechnol. 21 [In Press].
18 Kim, M. and J. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103: 91-96.   DOI   ScienceOn
19 Kim, M. H., S. T. Shim, Y. S. Kim, and K. H. Kyung. 2002. Diversity of leuconostocs on garlic surface, an extreme environment. J. Microbiol. Biotechnol. 12: 497-502.
20 Kim, S. Y., K. S. Yoo, J. E. Kim, J. S. Kim, J. Y. Jung, Q. Jin, H. J. Eom, and N. S. Han. 2010. Diversity analysis of lactic acid bacteria in Korean rice wines by culture-independent method using PCR-denaturing gradient gel electrophoresis. Food Sci. Biotechnol. 19: 749-755.   DOI   ScienceOn
21 Kim, T. W., J. Y. Lee, S. H. Jung, Y. M. Kim, J. S. Jo, D. K. Chung, et al. 2002. Identification and distribution of predominant lactic acid bacteria in kimchi, a Korean traditional fermented food. J. Microbiol. Biotechnol. 12: 635-642.
22 Ku, K. H., K. O. Kang, and W. J. Kim. 1988. Some quality changes during fermentation of kimchi. Korean J. Food Sci. Technol. 20: 476-482.
23 Kim, T. W., J. H. Lee, S. E. Kim, M. H. Park, H. C. Chang, and H. Y. Kim. 2009. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131: 265-271.   DOI   ScienceOn
24 Kim, T. W., J. Y. Lee, H. S. Song, J. H. Park, G. E. Ji, and H. Y. Kim. 2004. Isolation and identification of Weissella kimchii from green onion by cell protein pattern analysis. J. Microbiol. Biotechnol. 14: 105-109.
25 Lee, J. S., G. Y. Heo, J. W. Lee, Y. J. Oh, J. A. Park, Y. H. Park, et al. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150   DOI   ScienceOn
26 Lee, M. J. and J. H. Lee. 2009. Detection of pediococci in kimchi using pediococci selective medium. Korean J. Microbiol. Biotechnol. 37: 238-242.
27 Lee, S. H. and S. D. Kim. 1988. Effect of starters on fermentation of kimchi. J. Korean Soc. Food Nutr. 17: 342-347.
28 Lee, Y. H. and I. W. Yang. 1970. Studies on the packaging and preservation of kimchi. J. Korean Agric. Chem. Soc. 13: 207-218
29 Mheen, T. I. and T. W. Kwon. 1984. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450.
30 Park, W. P., K. D. Park, J. H. Kim, Y. B. Cho, and M. J. Lee. 2000. Effect of washing conditions in salted Chinese cabbage on the quality of kimchi. J. Korean Soc. Food Sci. Nutr. 29: 30-34.
31 Miller, K. M., T. J. Ming, A. D. Schulze, and R. E. Withler. 1999. Denaturing gradient gel electrophoresis (DGGE): A rapid and sensitive technique to screen nucleotide sequence variation in populations. Biotechniques 27: 1016-1018.