• Title/Summary/Keyword: Mittag-Leffler function

Search Result 53, Processing Time 0.03 seconds

GENERALIZED FRACTIONAL DIFFERINTEGRAL OPERATORS OF THE K-SERIES

  • Gupta, Rajeev Kumar;Shaktawat, Bhupender Singh;Kumar, Dinesh
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • In the present paper, we further study the generalized fractional differintegral (integral and differential) operators involving Appell's function $F_3$ introduced by Saigo-Maeda [9], and are applied to the K-Series defined by Gehlot and Ram [3]. On account of the general nature of our main results, a large number of results obtained earlier by several authors such as Ram et al. [7], Saxena et al. [14], Saxena and Saigo [15] and many more follow as special cases.

FRACTIONAL EULER'S INTEGRAL OF FIRST AND SECOND KINDS. APPLICATION TO FRACTIONAL HERMITE'S POLYNOMIALS AND TO PROBABILITY DENSITY OF FRACTIONAL ORDER

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.257-273
    • /
    • 2010
  • One can construct a theory of probability of fractional order in which the exponential function is replaced by the Mittag-Leffler function. In this framework, it seems of interest to generalize some useful classical mathematical tools, so that they are more suitable in fractional calculus. After a short background on fractional calculus based on modified Riemann Liouville derivative, one summarizes some definitions on probability density of fractional order (for the motive), and then one introduces successively fractional Euler's integrals (first and second kind) and fractional Hermite polynomials. Some properties of the Gaussian density of fractional order are exhibited. The fractional probability so introduced exhibits some relations with quantum probability.

A STUDY OF THE RIGHT LOCAL GENERAL TRUNCATED M-FRACTIONAL DERIVATIVE

  • Chauhan, Rajendrakumar B.;Chudasama, Meera H.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.503-520
    • /
    • 2022
  • We introduce a new type of fractional derivative, which we call as the right local general truncated M-fractional derivative for α-differentiable functions that generalizes the fractional derivative type introduced by Anastassiou. This newly defined operator generalizes the standard properties and results of the integer order calculus viz. the Rolle's theorem, the mean value theorem and its extension, inverse property, the fundamental theorem of calculus and the theorem of integration by parts. Then we represent a relation of the newly defined fractional derivative with known fractional derivative and in context with this derivative a physical problem, Kirchoff's voltage law, is generalized. Also, the importance of this newly defined operator with respect to the flexibility in the parametric values is described via the comparison of the solutions in the graphs using MATLAB software.