• Title/Summary/Keyword: Mitogen-activated protein kinase (MAPK)

Search Result 484, Processing Time 0.023 seconds

The Study of Anti-inflammatory Effect of Suryeon-hwan Water Extract in RAW 264.7 Cells (대식세포에서 수련환(茱連丸) 물추출물의 항염증작용에 관한 연구)

  • Yoon, Yeo-Hwan;Kim, Sung-Bae;Kang, Ok-Hwa;Mun, Su-Hyun;Seo, Yun-Soo;Yang, Da-Wun;Kang, Da-Hye;Wi, Gyeong;Lim, Jae-Soo;Kim, Ma-Ryong;Kwak, Nam-Won;Kong, Ryong;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.125-132
    • /
    • 2014
  • Objectives : Suryeon-hwan (SRH) exhibits potent anti-inflammatory activity with an unknown mechanism. However, there has been a lack of studies regarding the effects of SRH on the inflammatory activities and effector inflammatory disease mechanism about macrophage before is not known. So, the investigation focused on whether SRH inhibited nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions, as well as the expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells. Methods : Cells were treated with 200 ng/mL of LPS 30 min prior to the addition of SRH. Cell viability was measured by MTS assay. The production of nitric oxide (NO) was determined by reacting cultured medium with Griess reagent. The content of level of cytokines (PGE, IL-6) in media from LPS-stimulated Raw 264.7 cells was analyed by ELISA kit. The expression of COX-2, iNOS and MAPKs was investigated by Western blot, RT-PCR. Results : We found that SRH inhibited LPS-induced NO, $PGE_2$ and IL-6 productions as well as the expressions of iNOS and COX-2. Furthermore, SRH suppressed the LPS-induced phosphorylation of MAPK and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. Conclusions : These results suggest that SRH has inhibitory effects on LPS-induced $PGE_2$, NO, and IL-6 production, as well as the expressions of iNOS and COX-2 in the murine macrophage. These inhibitory effects occur through blockades on the phosphorylation of MAPKs following activation.

Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes

  • Lee, Seung Eun;Kim, Eun Young;Choi, Hyun Yong;Moon, Jeremiah Jiman;Park, Min Jee;Lee, Jun Beom;Jeong, Chang Jin;Park, Se Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.635-647
    • /
    • 2014
  • Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; $44h+10{\mu}M$ rapamycin/24 h, $47.52{\pm}5.68$) or control oocytes (44 h IVM; $42.14{\pm}4.40$) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, $22.04{\pm}5.68$) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes.

Neuroprotective Effects of Bread Containing Cirsium setidens or Aster scaber (곤드레 또는 참취를 함유한 빵의 뇌신경 보호효과)

  • Kwon, Ki Han;Lim, Heekyung;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.829-835
    • /
    • 2014
  • This study investigated the neuroprotective effects of bread containing extract from Cirsium setidens (CS) or Aster scaber (AS) against $H_2O_2$-induced death of human brain neuroblastoma SK-N-SH cells. Treatment with bread containing extract from CS (CSB) or AS (ASB) reduced $H_2O_2$ cytotoxicity in SK-N-SH cells, the intracellular ROS level, and the phospho-p38 mitogen-activated protein kinase (MAPK) level. In the sensory evaluation, wild vegetable flavor scores of CSB were higher than those of ASB and bread containing 0% CS or AS (NB). In terms of appearance, color, flavor, softness, and overall acceptability, CSB and ASB showed higher scores than NB, but no differences were observed between CSB and ASB. These results indicate that CSB and ASB have potent health benefits in terms of neuroprotection against oxidative stress mediated through antioxidant activity and inhibition of p38 phosphorylation in brain neural cells. Thus, CS and AS could be considered as a health functional material.

Mycobacterium abscessus ᴅ-alanyl-ᴅ-alanine dipeptidase induces the maturation of dendritic cells and promotes Th1-biased immunity

  • Lee, Seung Jun;Jang, Jong-Hwa;Yoon, Gun Young;Kang, Da Rae;Park, Hee Jo;Shin, Sung Jae;Han, Hee Dong;Kang, Tae Heung;Park, Won Sun;Yoon, Young Kyung;Soh, Byoung Yul;Jung, In Duk;Park, Yeong-Min
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.554-559
    • /
    • 2016
  • Mycobacterium abscessus, a member of the group of non-tuberculous mycobacteria, has been identified as an emerging pulmonary pathogen in humans. However, little is known about the protective immune response of antigen-presenting cells, such as dendritic cells (DCs), which guard against M. abscessus infection. The M. abscessus gene MAB1843 encodes ᴅ-alanyl-ᴅ-alanine dipeptidase, which catalyzes the hydrolysis of ᴅ-alanyl-ᴅ-alanine dipeptide. We investigated whether MAB1843 is able to interact with DCs to enhance the effectiveness of the host's immune response. MAB1843 was found to induce DC maturation via toll-like receptor 4 and its downstream signaling pathways, such as the mitogen-activated protein kinase and nuclear factor kappa B pathways. In addition, MAB1843-treated DCs stimulated the proliferation of T cells and promoted Th1 polarization. Our results indicate that MAB1843 could potentially regulate the immune response to M. abscessus, making it important in the development of an effective vaccine against this mycobacterium.

Anti-Inflammatory Activity of Ethanol Extracts from Hizikia fusiformis Fermented with Lactic Acid Bacteria in LPS-Stimulated RAW264.7 Macrophages (유산균 종류에 따른 발효톳 추출물의 항염증 활성)

  • Kwon, Myeong Sook;Mun, Ok-Ju;Bae, Min Joo;Lee, Seul-Gi;Kim, Mihyang;Lee, Sang-Hyeon;Yu, Ki Hwan;Kim, Yuck Yong;Kong, Chang-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1450-1457
    • /
    • 2015
  • The anti-inflammatory effect of ethanol extracts from Hizikia fusiformis fermented with and without lactic acid bacteria was compared in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophages. The fermentation was done using Weissella sp. SH-1 and Lactobacillus casei in a mixture of glucose and lactate source at $30^{\circ}C$ for 30 days. As a result, we confirmed that the fermentation of H. fusiformis with lactic acid bacteria inhibited LPS-stimulated nitric oxide (NO) production and the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-6, tumor necrosis factor ${\alpha}$, and IL-$1{\beta}$ as important inflammatory factors. During a comparison analysis, we found that L. casei fermented groups significantly suppressed NO production by regulating iNOS and COX-2 expression. Also, the effective suppression of pro-inflammatory cytokine and LPS-induced activation of mitogen- activated protein kinase indicated that the fermentation using Weissella sp. SH-1 and L. casei may provide an increment towards the extraction of active components, which are effective anti-inflammatory agents.

Protective effect of Evodiae Fructus extract in HCl/ethanol-induced gastritis mice (HCl/ethanol로 유도된 위염 마우스 모델에서 오수유 추출물의 보호 효과)

  • IL-Ha Jeong;Mi-Rae Shin;Min Ju Kim;Hui Yeon An;Seong-Soo Roh
    • Journal of Nutrition and Health
    • /
    • v.57 no.4
    • /
    • pp.403-417
    • /
    • 2024
  • Purpose: This study investigated the anti-inflammatory effects of Evodiae Fructus (EF) on hydrochloric acid (HCl)/ethanol-induced gastritis, focusing on its impact on oxidative stress by analyzing inflammatory cytokines and inflammation-related factors. The total polyphenol and flavonoid contents were determined through in vitro experiments, while the radical scavenging activity was confirmed using 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assays. Methods: In vivo experiments were conducted on rats divided into 5 groups (n = 7/in each group): normal group (Normal), 150 mM HCl/60% ethanol-induced gastritis group (Control), 150 mM HCl/60% ethanol-induced gastritis group administered 10 mg/kg sucralfate (SC), 150 mM HCl/60% ethanol-induced gastritis group administered EF at the doses of 100 mg/kg or 200 mg/kg (EF100 or EF200). The mice were pretreated with the extract (EF) or drug (SC), and after 1 hour, 150 mM HCl/60% ethanol (v/v) mixture was administered orally. Reactive oxygen species (ROS) levels, peroxynitrite (ONOO-), and pro-inflammatory cytokines including tumor necrosis factor-α and interleukin-1 beta were assessed in serum. Additionally, western blotting of the gastric tissues confirmed the expression of inflammation-related proteins. Results: EF alleviated the gastric mucosal damage caused by 150 mM HCl/60% ethanol. The assessment of oxidative stress in the serum showed that EF significantly reduced ROS and ONOO- levels and significantly decreased the levels of pro-inflammatory cytokines. Western blot analysis revealed that EF reduced ROS-generating nicotinamide adenine dinucleotide phosphate oxidase subunits, including gp91phox, p22phox, and p47phox. Additionally, EF mitigated the inflammation by inhibiting the mitogen-activated protein kinase signaling pathway. Conclusion: These results indicate that EF is a potential herbal medicine candidate for the treatment of oxidative stress-induced gastritis.

The Anti-inflammatory Effect of Skipjack Tuna (Katsuwonus pelamis) Oil in LPS-induced RAW 264.7 Cells and Mouse Models (LPS 유도 RAW 264.7 세포와 마우스 모델에서 참치(Katsuwonus pelamis) 유의 항염증 효과)

  • Kang, Bo-Kyeong;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Ahn, Na-Kyung;Choi, Yeon-Uk;Bark, Si-Woo;Pak, Won-Min;Kim, Bo-Ram;Park, Ji-Hye;Bae, Nan-Young;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • This study was carried out to demonstrate the anti-inflammatory effect of tuna oil (TO) using LPS-induced inflammation responses and mouse models. First, nitric oxide (NO) and pro-inflammatory cytokines levels were suppressed up to 50% with increasing concentrations of TO without causing any cytotoxicity. Also, the expression of a variety of proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB), was suppressed in a dosedependent manner by treatment with TO. Furthermore, TO also inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 protein kinase (p38). Moreover, in in vivo testing the formation of ear edema was reduced at the highest dose tested compared to that in the control, and a reduction of ear thickness and the number of mast cells was observed in histological analysis. In acute toxicity test, no mortalities occurred in mice administrated 5,000 mg/kg body weight of TO over a two-week observation period. Our results suggest that TO has a considerable anti-inflammatory property through the suppression of inflammatory mediator productions and that it could prove to be useful as a potential anti-inflammatory therapeutic material.

Mechanisms for Anti-wrinkle Activities from Fractions of Black Chokeberries (블랙초크베리 분획물로부터의 주름억제 효과에 대한 작용기전)

  • Choi, Eun-Young;Kim, Eun-Hee;Lee, Jae-Bong;Do, Eun-Ju;Kim, Sang-Jin;Kim, Se-Hyeon;Park, Jeong-Yeol;Lee, Jin-Tae
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.34-41
    • /
    • 2016
  • Black chokeberries (scientific name Aronia melanocarpa) have been reported to have major effects due to anti-oxidant, anti-inflammatory, and anti-cancer capabilities. In this study, we investigated the anti- wrinkle effects of A. melanocarpa, including collagenase inhibition effects and their molecular biological mechanisms, such as oxidative stress-induced matrix metalloproteinase (MMP), mitogen-activated protein (MAP) kinase, and activator protein (AP)-1 expression and/or phosphorylation. In collagenase inhibition activity, the ethyl acetate fraction of black chokeberry (AE) was 77.2% at a concentration of 500 μg/ml, which was a significant result compared to that of Epigallocatechin gallate (positive control, 83.9% in 500 μg/ml). In the reactive oxygen species (ROS) assay, the AE produced 78% of ROS in 10 μg/ml and 70% of ROS in 75 μg/ml, which was a much lower percentage than the ROS production of H2O2-induced CCRF S-180II cells. In the MTT assay, cell viability was increased dose-dependently with AE in H2O2-induced cells. In protein expression by western blot assay, the AE suppressed the expression and phosphorylation of MMPs (MMP-1, -3, -9), MAPK (ERK, JNK, and p38), and AP-1 (c-Fos and c-Jun), and expressed the pro-collagen type I in H2O2-induced cells. These results suggest that black chokeberries have anti-wrinkle and collagen-production effects, and they may be used in applications for material development in the functional food and cosmetic industries.

Immunomodulating activity of Sargassum horneri extracts in RAW264.7 macrophages (RAW264.7 대식세포에서 괭생이 모자반 추출물의 면역활성 증진 효과)

  • Kim, Dong-Sub;Sung, Nak-Yun;Park, Sang-Yun;Kim, Geon;Eom, Ji;Yoo, Jin-Gon;Seo, In-Ra;Han, In-Jun;Cho, Young-Baik;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.51 no.6
    • /
    • pp.507-514
    • /
    • 2018
  • Purpose: Sargassum horneri (S. horneri) is a species of brown macroalgae that is common along the coast of Japan and Korea. The present study investigated the immuno-modulatory effects of different types of S. horneri extracts in RAW264.7 macrophages. Methods: S. horneri was extracted by three different methods, hot water extraction, 50% ethanol extraction, and supercritical fluid extraction. Cell viability was then measured by MTT assay, while the production levels of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay and Griess assay, respectively. The expression and activation levels of inducible NO synthase (iNOS), mitogen-activated protein kinase (MAPK) and nuclear factor ${\kappa}B$ ($NF-{\kappa}B$) were examined by western blot analysis. Results: The three different S. horneri extracts were nontoxic against RAW 264.7 cells up to $50{\mu}g/mL$, among which treatment with hot water extract (HWE) of S. horneri significantly enhanced the production of TNF-${\alpha}$, IL-6, and NO in a dose-dependent manner. Hot water extract of S. horneri also increased the expression level of iNOS, suggesting that up-regulation of iNOS expression by HWE of S. horneri was responsible for the induction of NO production. In addition, treatment of RAW 264.7 macrophages with HWE of S. horneri increased the phosphorylation levels of ERK, p38 and JNK. Furthermore, the activation and subsequent nuclear translocation of $NF-{\kappa}B$ was enhanced upon treatment with HWE of S. horneri, indicating that HWE of S. horneri activates macrophages to secrete TNF-${\alpha}$, IL-6 and NO and induces iNOS expression via activation of the $NF-{\kappa}B$ and MAPKs signaling pathways. Conclusion: Taken together, these findings suggest that HWE of S. horneri possesses potential as a functional food with immunomodulatory activity.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.