• Title/Summary/Keyword: Mitogen-Activated Protein Kinase 3

Search Result 397, Processing Time 0.031 seconds

Antitumor effects of valdecoxib on hypopharyngeal squamous carcinoma cells

  • Trang, Nguyen Thi Kieu;Yoo, Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.439-446
    • /
    • 2022
  • The antitumoral effects of valdecoxib (Val), an United States Food and Drug Administration-approved anti-inflammatory drug that was withdrawn due to the side effects of increased risk of cardiovascular adverse events, were investigated in hypopharyngeal squamous cell carcinoma cells by performing a cell viability assay, transwell assay, immunofluorescence imaging, and Western blotting. Val markedly inhibited cell viability with an IC50 of 67.3 µM after 48 h of treatment, and also downregulated cell cycle proteins such as Cdks and their regulatory cyclin units. Cell migration and invasion were severely suppressed by inhibiting integrin α4/FAK expression. In addition, Val activated the cell cycle checkpoint CHK2 in response to excessive DNA damage, which led to the activation of caspase-3/9 and induced caspase-dependent apoptosis. Furthermore, the signaling cascades of the PI3K/AKT/mTOR and mitogen-activated protein kinase pathways were significantly inhibited by Val treatment. Taken together, our results indicate that Val can be used for the treatment of hypopharyngeal squamous cell carcinoma.

Ginsenoside Rb1 increases macrophage phagocytosis through p38 mitogen-activated protein kinase/Akt pathway

  • Xin, Chun;Quan, Hui;Kim, Joung-Min;Hur, Young-Hoe;Shin, Jae-Yun;Bae, Hong-Beom;Choi, Jeong-Il
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.394-401
    • /
    • 2019
  • Background: Ginsenoside Rb1, a triterpene saponin, is derived from the Panax ginseng root and has potent antiinflammatory activity. In this study, we determined if Rb1 can increase macrophage phagocytosis and elucidated the underlying mechanisms. Methods: To measure macrophage phagocytosis, mouse peritoneal macrophages or RAW 264.7 cells were cultured with fluorescein isothiocyanate-conjugated Escherichia coli, and the phagocytic index was determined by flow cytometry. Western blot analyses were performed. Results: Ginsenoside Rb1 increased macrophage phagocytosis and phosphorylation of p38 mitogenactivated protein kinase (MAPK), but inhibition of p38 MAPK activity with SB203580 decreased the phagocytic ability of macrophages. Rb1 also increased Akt phosphorylation, which was suppressed by LY294002, a phosphoinositide 3-kinase inhibitor. Rb1-induced Akt phosphorylation was inhibited by SB203580, (5Z)-7-oxozeaenol, and small-interfering RNA (siRNA)-mediated knockdown of $p38{\alpha}$ MAPK in macrophages. However, Rb1-induced p38 MAPK phosphorylation was not blocked by LY294002 or siRNA-mediated knockdown of Akt. The inhibition of Akt activation with siRNA or LY294002 also inhibited the Rb1-induced increase in phagocytosis. Rb1 increased macrophage phagocytosis of IgG-opsonized beads but not unopsonized beads. The phosphorylation of p21 activated kinase 1/2 and actin polymerization induced by IgG-opsonized beads and Rb1 were inhibited by SB203580 and LY294002. Intraperitoneal injection of Rb1 increased phosphorylation of p38 MAPK and Akt and the phagocytosis of bacteria in bronchoalveolar cells. Conclusion: These results suggest that ginsenoside Rb1 enhances the phagocytic capacity of macrophages for bacteria via activation of the p38/Akt pathway. Rb1 may be a useful pharmacological adjuvant for the treatment of bacterial infections in clinically relevant conditions.

Bone Nodule Formation of MG63 Cells is Increased by the Interplay of Signaling Pathways Cultured on Vitamin $D_3$-Entrapped Calcium Phosphate Films

  • Choi, Yong-Seok;Hong, Yoon-Jung;Hur, Jung;Kim, Mee-Young;Jung, Jae-Young;Lee, Woo-Kul;Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.363-370
    • /
    • 2009
  • Since vitamin $D_3$ is an important regulator of osteoblastic differentiation, a presently-established vitamin $D_3$-entrapped calcium phosphate film (VCPF) was evaluated for hard tissue engineering. The entrapped vitamin $D_3$ more rapidly induced bone nodule formation. To characterize the cellular events leading to regulations including faster differentiation, signal transduction pathways were investigated in osteoblastic MG63 cells at a molecular level. Major signaling pathways for MG63 cell proliferation including phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and focal adhesion kinase pathways were markedly down-regulated when cells were cultured on calcium phosphate film (CPF) and VCPF. This agreed with our earlier observations of the immediate delay in proliferation of MG63 cells upon culture on CPF and VCPF. On the other hand, the p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase A (PKA) pathways were significantly up-regulated on both CPF and VCPF. CPF alone could simulate differential behaviors of MG63 cells even in the absence of osteogenic stimulation and entrapment of vitamin $D_3$ within CPF further amplified the signal pathways, resulting in continued promotion of MG63 cell differentiation. Interplay of p38 MAPK and PKA signaling pathways likely is a significant event for the promotion of differentiation and mineralization of MG63 cells.

Fermented sea tangle (Laminaria japonica Aresch) Accelerates Osteoblast Differentiation in murine osteoblastic MC3T3-E1 Cells (MC3T3-E1 골아세포에서 발효 다시마 추출물에 의한 조골세포 분화의 촉진)

  • Nara Jeong;Yung Hyun Choi
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2023
  • The Laminaria japonica Aresch (Sea tangle) belongs to the brown algae and has a long history as a food material in Asia, including Korea. Recent studies have found that the fermented Sea tangle extract (FST) inhibited the differentiation of osteoclasts and protected osteoblasts from oxidative damage. This study aims to explore the possibility that FST can induce the differentiation of osteoblasts and identify the responsible mechanism. According to our results, FST induced differentiation into osteogenic cells in the presence of osteoblastic MC3T3-E1 cells under non-toxic conditions.. This finding was confirmed by phalloidin staining, increased alkaline phosphatase activity, and calcium deposition. Additionally, it was found that this process was achieved by increasing the expression of key factors involved in osteoblast differentiation, such as runt-related transcription factor-2, osterix, β-catenin, and bone morphogenetic protein-2. Moreover, FST increased autophagy, which may contribute to the maintenance of the bone formation homeostasis, and is associated with the activation of the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. Although further research about the bioactive substances contained in FST and the tests of their efficacy are required, the results of this study indicate that FST has incredible applicability as a functional material for maintaining the bone homeostasis.

Mechanism of Growth Hormone Action : Recent Developments - A Review

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1785-1793
    • /
    • 2001
  • The interaction of growth hormone with it's receptor results in dimerization of receptor, a feature known in action of certain cytokines. The interaction results in generation of number of signalling molecules. The involvement of Janus kinases, mitogen activated kinases, signal transduction and activator of transcription proteins, insulin like substrate, phosphatidylinositol 3-kinase, phospholipase C, protein kinase C is almost established in growth hormone action. There are still many missing links in explaining diversified activities of growth hormone. Amino acid sequence data for growth hormones and growth hormone receptors from a number of species have proved useful in understanding species specific effects of growth hormone. Complete understanding of growth hormone action can have implications in designing drugs for obtaining desired effects of growth hormone.

Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

  • Lee, Yun Yeong;Ryu, Min Sook;Kim, Hong Seok;Suganuma, Masami;Song, Kye Yong;Lim, In Kyoung
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.266-279
    • /
    • 2016
  • The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) ${\alpha}$ and $PKC{\beta}1$ exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. $PKC{\alpha}$ accompanied pErk1/2 to the nucleus after freeing it from $PEA-15pS^{104}$ via $PKC{\beta}1$ and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of $PKC{\alpha}$ were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated $PKC{\alpha}$ expression and increased epidermal and hair follicle cell proliferation. Thus, $PKC{\alpha}$ downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear $PKC{\alpha}$ degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of $PKC{\alpha}$ expression following TPA treatment reduces pErk1/2-activated SP1 biding to the $p21^{WAF1}$ gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.

Anti-inflammatory Activity of 3,6,3'-Trihydroxyflavone in Mouse Macrophages, In vitro

  • Lee, Eunjung;Jeong, Ki-Woong;Shin, Areum;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3169-3174
    • /
    • 2014
  • Numerous studies have examined the role of flavonoids in modulating inflammatory responses in vitro. In this study, we found a novel flavonoid, 3,6,3'-trihydroxyflavone (1), with anti-inflammatory effects. Anti-inflammatory activity and mechanism of action were examined in mouse macrophages stimulated with lipopolysaccharide (LPS). Our results showed that the anti-inflammatory effects of 1 are mediated via p38 mitogen-activated protein kinase (p38 MAPK), Jun-N terminal kinase (JNK), and the extracellular-signal-regulated kinase (ERK) pathway in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Binding studies revealed that 1 had a high binding affinity to JNK1 ($1.568{\times}10^8M^{-1}$) and that the 3- and 6-hydroxyl groups of the C-ring and A-ring of 1 participated in hydrogen bonding interactions with the side chains of Asn114 and Lys55, respectively. The oxygen at the 3' position of the B-ring formed a hydrogen bond with side chain of Met111. Therefore, 1 could be a potential inhibitor of JNKs, with potent anti-inflammatory activity.

Changes in Mitogen-activated Protein Kinase Activities During Acidification-induced Apoptosis in CHO Cells

  • Kim, Jin-Young;Jeong, Dae-Won;Roh, Sang-Ho;Min, Byung-Moo
    • International Journal of Oral Biology
    • /
    • v.30 no.3
    • /
    • pp.85-90
    • /
    • 2005
  • Homeostatic pH is very important for various cellular processes, including metabolism, survival, and death. An imbalanced-pH might induce cellular acidosis, which is involved in many abnormal events such as apoptosis and malignancy. One of several factors contributing to the onset of metabolic acidosis is the production of lactate and protons by lactate dehydrogenase (LDH) in anaerobic glycolysis. LDH is an important enzyme that catalyzes the reversible conversion of pyruvate to lactate. This study sought to examine whether decreases in extracellular pH induce apoptosis of CHO cells, and to elucidate the role of mitogen-activated protein kinases (MAPKs) in acidification-induced apoptosis. To test apoptotic signaling by acidification we used CHO dhfr cells that were sensitive to acidification, and CHO/anti-LDH cells that are resistant to acidification-induced apoptosis and have reduced LDH activity by stable LDH antisense mRNA expression. In the present study, cellular lactic acid-induced acidification and the role of MAPKs signaling in acidification-induced apoptosis were investigated. Acidification, which is caused by $HCO{_3}^-$-free conditions, induced apoptosis and MAPKs (ERK, JNK, and p38) activation. However, MAPKs were slightly activated in acidic conditions in the CHO/anti-LDH cells, indicating that lactic acid-induced acidification induces activation of MAPKs. Treatment with a p38 inhibitor, PD169316, increased acidification-induced apoptosis but apoptosis was not affected by inhibitors for ERK (U0126) or JNK (SP600125). Thus, these data support the hypothesis that activation of the p38 MAPK during acidification-induced apoptosis contributes to cell survival.

Swertia pseudochinensis Methanol Extract Inhibits IgE-mediated Allergic Response In vitro and In vivo (자주쓴풀 메탄올추출물의 IgE-매개 알레르기 반응 억제 및 기전)

  • Jeon, Sun Ha;Kim, Young Mi
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.317-324
    • /
    • 2020
  • Mast cells play a key role in IgE-mediated allergic response. We investigated whether Swertia pseudochinensis Hara extract (SPE) inhibits IgE-mediated allergic response in mast cells and an allergic animal model. Additionally, we explored SPE's mechanism of action in mast cells. Our results showed that SPE inhibited both antigen-stimulated degranulation and the production of TNF-α and IL-4 in bone marrow-derived mast cells (BMMCs) and rat basophilic leukemia (RBL)-2H3 cells. SPE also suppressed allergic response in IgE-mediated passive cutaneous anaphylaxis (PCA) in mice. As for the mechanism of action of SPE in mast cells, it inhibited the activation of Syk kinase, a critical signaling protein in the FcεRI-mediated signaling pathway, and also the activation of LAT, a downstream adaptor protein of Syk. We further observed the reduced activation of mitogen-activated protein (MAP) kinases (P38, ERK1/2, and JNK) and Akt in mast cells. Our results described for the first time that SPE has an anti-allergic effect by suppressing mast cells through the inhibition of Syk kinase. Therefore, SPE may be useful for the treatment of type I allergic diseases.

Anti-osteoarthritis Effects of the Combination of Boswellia serrata, Curcuma longa, and Terminalia chebula Extracts in Interleukin-1β-stimulated Human Articular Chondrocytes

  • Kim, Hae Lim;Min, Daeun;Lee, Dong-Ryung;Lee, Sung-Kwon;Choi, Bong-Keun;Yang, Seung Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.2
    • /
    • pp.79-87
    • /
    • 2022
  • In this study, extracts of Boswellia serrata gum resin, Curcuma longa rhizome, and Terminalia chebula fruit were combined in different ratios, and their anti-osteoarthritis effects were compared to determine which combination had the best synergistic effect. B. serrata, C. longa, and T. chebula extracts in a 2:1:2 ratio exhibited higher antioxidative activity in scavenging DPPH radicals than did the individual extracts alone or the other extract combinations. Additionally, the 2:1:2 combination significantly improved the levels of enzymatic antioxidants and antioxidant-related proteins. Moreover, this same combination ratio decreased the protein levels of matrix metalloproteinase (MMP) 3 and MMP13 in interleukin-1β-stimulated human articular chondrocytes (HCHs) and increased those of aggrecan and collagen type II alpha 1 chain (COL2A1). Analysis of the underlying mechanisms revealed that the 2:1:2 combination significantly inhibited the phosphorylation of nuclear factor kappa B (NF-κB) p65, extracellular regulated protein kinase (ERK), and p38 mitogen-activated protein kinase (MAPK). Therefore, the 2:1:2 combination of these three plant extracts has the best potential for use as an effective dietary supplement for improving joint health compared with the individual extracts and their other combination ratios.