• Title/Summary/Keyword: Mitochondrial genome

Search Result 203, Processing Time 0.032 seconds

Systematic Study on the Fishes of the Family Cobitidae (Pisces, Cypriniformes) 7. A Study on Mitochondrial DNA Differentiation and Speciation in Korean Cobitid Fish, Cobitis rotundicaudata (기름종개과(Family Cobitidae) 어류의 계통분류에 관한 연구, 7. 새코미꾸리의 mtDNA 분석에 의한 종분화 연구)

  • 김재흡;민미숙;김종범;양서영
    • Animal Systematics, Evolution and Diversity
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 1997
  • 한국 고유종인 새코미꾸리(Cobitis rotundicaudata)의 집단간 유전적 차이에 따른 종 분화 여부를 밝히고자 4개집단을 대상으로mitochondrial DNA(mtDNA)의 RFLP분석을 실시 하였다. C. rotundicaudata mtDNA를 10개의 6-base cutting 제한요소로 처리한 다음 그 절 편 양상을 비교, 분석한 결과 4개 집단 공히 mtDNA의 전체 genome 크기는 약 16.5$\pm$ 0.5Kbp였으며 공통절편수(F)에서 한강 2개 집단(가평, 진부)과 동해안 마읍천 짐단간의 F값 은 0.911로 매우 가까웠으나 낙동강의 산청집단은 타 3개 집단과 F=0.375로 차이가 있었다. 또한 염기치환율(p)에 있어서도 한강 2개 집단 및 마읍천 집단간은 평균 p=0.005로 매우 유 사하였으나, 산청 집단은 타 집단들과 염기치환율에 있어 p=0.059로 종수준의 뚜렷한 차이 를 나타내어서 이들은 각각 별종으로 사료된다.

  • PDF

Stem cells and reproduction

  • Lee, Yeonmi;Kang, Eunju
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.482-489
    • /
    • 2019
  • Reproductive biotechnology has developed rapidly and is now able to overcome many birth difficulties due to infertility or the transmission of genetic diseases. Here we introduce the next generation of assisted reproductive technologies (ART), such as mitochondrial replacement technique (MRT) or genetic correction in eggs with micromanipulation. Further, we suggest that the transmission of genetic information from somatic cells to subsequent generations without gametes should be useful for people who suffer from infertility or genetic diseases. Pluripotent stem cells (PSCs) can be converted into germ cells such as sperm or oocytes in the laboratory. Notably, germ cells derived from nuclear transfer embryonic stem cells (NT-ESCs) or induced pluripotent stem cells (iPSCs) inherit the full parental genome. The most important issue in this technique is the generation of a haploid chromosome from diploid somatic cells. We hereby examine current science and limitations underpinning these important developments and provide recommendations for moving forward.

Evaluation and interpretation of transcriptome data underlying heterogeneous chronic obstructive pulmonary disease

  • Ham, Seokjin;Oh, Yeon-Mok;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.2.1-2.12
    • /
    • 2019
  • Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.

Observations of the Mating Behavior and Larvae Habitat of Polyphylla laticollis manchurica in the Republic of Korea (Coleoptera: Scarabaeidae: Melolonthinae)

  • Jaeha Lee;Sang-Bong Son;Sang Woo Jung;Yoon-Ho Kim
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.3
    • /
    • pp.131-133
    • /
    • 2023
  • Polyphylla laticollis manchurica Semenov, 1900, is a critically endangered species in the Republic of Korea and is strictly protected as a Class I endangered species. Although this beetle species faces a threat of extinction, its ecological understanding is limited. Previous studies conducted on this species in the Republic of Korea have focused only on its taxonomy and mitochondrial genome sequences. Herein, we report an observation of the mating of adults of P. l. manchurica in June 2021, during an ongoing study on Korean beetles. This incidence was reported around light sources from newly constructed townhouses near Geumgang River. Larval habitats were observed along the river between April 2022 and March 2023. Particularly, two larvae were found inside the plant debris, and three were found under the roots of reeds. This study provides key information on the mating ecology of P. l. manchurica that can assist conservation efforts of this critically endangered species.

First complete mitogenome sequence of Korean Gloydius ussuriensis (Viperidae: Crotalinae)

  • Hye Sook Jeon;Min Seock Do;Jung A Kim;Yoonjee Hong;Chae Eun Lim;Jae-Hwa Suh;Junghwa An
    • Journal of Species Research
    • /
    • v.13 no.2
    • /
    • pp.127-130
    • /
    • 2024
  • The first complete mitogenome sequence of the Red-tongue Pit Viper (Gloydius ussuriensis) from Korea was characterized using next-generation sequencing. The mitogenome is a circular molecule (17,209 bp) with a typical vertebrate mitogenome arrangement, which consists of 2 ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), two non-coding regions (D-loop), and 13 protein-coding genes (PCGs). The base composition of the mitogenome is 32.7% of A, 27.5% of C, 13.9% of G, and 25.9% of T, with a slight AT bias(58.6%). This phylogenetic analysis infers that G. ussuriensis is in the same group as the Chinese G. ussuriensis (Accession No. KP262412) and is closely related to G. blomhoffi and other species of the genus Gloydius. In our study, the complete mitogenome sequence of Korean G. ussuriensis was characterized and we provided basic genetic information on this species.

Mollusks Sequence Database: Version II (연체동물 전용 BLAST 서버 업데이트 (Version II))

  • Kang, Se Won;Hwang, Hee Ju;Park, So Young;Wang, Tae Hun;Park, Eun Bi;Lee, Tae Hee;Hwang, Ui Wook;Lee, Jun-Sang;Park, Hong Seog;Han, Yeon Soo;Lim, Chae Eun;Kim, Soonok;Lee, Yong Seok
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.429-431
    • /
    • 2014
  • Since we reported a BLAST server for the mollusk in 2004, no work has reported the usability or modification of the server. To improve its usability, the BLAST server for the mollusk has been updated as version II (http://www.malacol.or.kr/blast) in the present study. The database was constructed by using the Intel server Platform ZSS130 dual Xeon 3.20 GHz CPU and Linux CentOS system and with NCBI WebBLAST package. We downloaded the mollusk nucleotide, amino acid, EST, GSS and mitochondrial genome sequences which can be opened through NCBI web BLAST and used them to build up the database. The updated database consists of 520,977 nucleotide sequences, 229,857 amino acid sequences, 586,498 EST sequences, 23,112 GSS and 565 mitochondrial genome sequences. Total database size is 1.2 GB. Furthermore, we have added repeat sequences, Escherichia coli sequences and vector sequences to facilitate data validation. The newly updated BLAST server for the mollusk will be useful for many malacological researchers as it will save time to identify and study various molluscan genes.

Profiling of remote skeletal muscle gene changes resulting from stimulation of atopic dermatitis disease in NC/Nga mouse model

  • Lee, Donghee;Seo, Yelim;Kim, Young-Won;Kim, Seongtae;Choi, Jeongyoon;Moon, Sung-Hee;Bae, Hyemi;Kim, Hui-sok;Kim, Hangyeol;Kim, Jae-Hyun;Kim, Tae-Young;Kim, Eunho;Yim, Suemin;Lim, Inja;Bang, Hyoweon;Kim, Jung-Ha;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.367-379
    • /
    • 2019
  • Although atopic dermatitis (AD) is known to be a representative skin disorder, it also affects the systemic immune response. In a recent study, myoblasts were shown to be involved in the immune regulation, but the roles of muscle cells in AD are poorly understood. We aimed to identify the relationship between mitochondria and atopy by genome-wide analysis of skeletal muscles in mice. We induced AD-like symptoms using house dust mite (HDM) extract in NC/Nga mice. The transcriptional profiles of the untreated group and HDM-induced AD-like group were analyzed and compared using microarray, differentially expressed gene and functional pathway analyses, and protein interaction network construction. Our microarray analysis demonstrated that immune response-, calcium handling-, and mitochondrial metabolism-related genes were differentially expressed. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology pathway analyses, immune response pathways involved in cytokine interaction, nuclear factor-kappa B, and T-cell receptor signaling, calcium handling pathways, and mitochondria metabolism pathways involved in the citrate cycle were significantly upregulated. In protein interaction network analysis, chemokine family-, muscle contraction process-, and immune response-related genes were identified as hub genes with many interactions. In addition, mitochondrial pathways involved in calcium signaling, cardiac muscle contraction, tricarboxylic acid cycle, oxidation-reduction process, and calcium-mediated signaling were significantly stimulated in KEGG and Gene Ontology analyses. Our results provide a comprehensive understanding of the genome-wide transcriptional changes of HDM-induced AD-like symptoms and the indicated genes that could be used as AD clinical biomarkers.