DOI QR코드

DOI QR Code

Evaluation and interpretation of transcriptome data underlying heterogeneous chronic obstructive pulmonary disease

  • Ham, Seokjin (Department of Life Sciences, POSTECH) ;
  • Oh, Yeon-Mok (Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Roh, Tae-Young (Department of Life Sciences, POSTECH)
  • Received : 2018.12.03
  • Accepted : 2018.12.28
  • Published : 2019.03.31

Abstract

Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.

Keywords

References

  1. Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet 2012;379:1341-1351. https://doi.org/10.1016/S0140-6736(11)60968-9
  2. Blanchette CM, Dalal AA, Mapel D. Changes in COPD demographics and costs over 20 years. J Med Econ 2012;15:1176-1182. https://doi.org/10.3111/13696998.2012.713880
  3. Wedzicha JA. The heterogeneity of chronic obstructive pulmonary disease. Thorax 2000;55:631-632. https://doi.org/10.1136/thorax.55.8.631
  4. Buist AS, McBurnie MA, Vollmer WM, Gillespie S, Burney P, Mannino DM, et al. 17 International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet 2007;370:741-750. https://doi.org/10.1016/S0140-6736(07)61377-4
  5. Landis SH, Muellerova H, Mannino DM, Menezes AM, Han MK, van der Molen T, et al. Continuing to Confront COPD International Patient Survey: methods, COPD prevalence, and disease burden in 2012-2013. Int J Chron Obstruct Pulmon Dis 2014;9:597-611. https://doi.org/10.2147/COPD.S61854
  6. Janus ED, Phillips NT, Carrell RW. Smoking, lung function, and alpha 1-antitrypsin deficiency. Lancet 1985;1:152-154.
  7. Wan Y, Sun SX, Corman S, Huang X, Gao X, Shorr AF. A longitudinal, retrospective cohort study on the impact of roflumilast on exacerbations and economic burden among chronic obstructive pulmonary disease patients in the real world. Int J Chron Obstruct Pulmon Dis 2015;10:2127-2136. https://doi.org/10.2147/COPD.S80106
  8. Berndt A, Leme AS, Shapiro SD. Emerging genetics of COPD. EMBO Mol Med 2012;4:1144-1155. https://doi.org/10.1002/emmm.201100627
  9. Eagan TM, Ueland T, Wagner PD, Hardie JA, Mollnes TE, Damas JK, et al. Systemic inflammatory markers in COPD: results from the Bergen COPD Cohort Study. Eur Respir J 2010;35:540-548. https://doi.org/10.1183/09031936.00088209
  10. Kim WJ, Lim JH, Lee JS, Lee SD, Kim JH, Oh YM. Comprehensive analysis of transcriptome sequencing data in the lung tissues of COPD subjects. Int J Genomics 2015;2015:206937. https://doi.org/10.1155/2015/206937
  11. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009;25:1105-1111. https://doi.org/10.1093/bioinformatics/btp120
  12. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357-359. https://doi.org/10.1038/nmeth.1923
  13. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene 18 and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012;7:562-578. https://doi.org/10.1038/nprot.2012.016
  14. Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 2013;41:W34-W40. https://doi.org/10.1093/nar/gkt382
  15. Ahn J, Yuan Y, Parmigiani G, Suraokar MB, Diao L, et al. DeMix: deconvolution for mixed cancer transcriptomes using raw measured data. Bioinformatics 2013;29:1865-1871. https://doi.org/10.1093/bioinformatics/btt301
  16. Hwang D, Rust AG, Ramsey S, Smith JJ, Leslie DM, Weston AD, et al. A data integration methodology for systems biology. Proc Natl Acad Sci U S A 2005;102:17296-17301. https://doi.org/10.1073/pnas.0508647102
  17. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57. https://doi.org/10.1038/nprot.2008.211
  18. Soul J, Hardingham TE, Boot-Handford RP, Schwartz JM. PhenomeExpress: a refined network analysis of expression datasets by inclusion of known disease phenotypes. Sci Rep 2015;5:8117. https://doi.org/10.1038/srep08117
  19. Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 2013;41:D793-D800. https://doi.org/10.1093/nar/gks1055
  20. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005;21:3448-3449. https://doi.org/10.1093/bioinformatics/bti551
  21. Liu Z, Hu J. Mislocalization-related disease gene discovery using gene expression based computational protein localization prediction. Methods 2016;93:119-127. https://doi.org/10.1016/j.ymeth.2015.09.022
  22. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics: tissue-based map of the human proteome. Science 2015;347:1260419. https://doi.org/10.1126/science.1260419
  23. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, et al. 19 Detecting novel associations in large data sets. Science 2011;334:1518-1524. https://doi.org/10.1126/science.1205438
  24. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-140. https://doi.org/10.1093/bioinformatics/btp616
  25. Pomorska-Mol M, Markowska-Daniel I, Kwit K, Stepniewska K, Pejsak Z. C-reactive protein, haptoglobin, serum amyloid A and pig major acute phase protein response in pigs simultaneously infected with H1N1 swine influenza virus and Pasteurella multocida. BMC Vet Res 2013;9:14. https://doi.org/10.1186/1746-6148-9-14
  26. Duvoix A, Dickens J, Haq I, Mannino D, Miller B, Tal-Singer R, et al. Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease. Thorax 2013;68:670-676. https://doi.org/10.1136/thoraxjnl-2012-201871
  27. Hacievliyagil SS, Mutlu LC, Temel I. Airway inflammatory markers in chronic obstructive pulmonary disease patients and healthy smokers. Niger J Clin Pract 2013;16:76-81. https://doi.org/10.4103/1119-3077.106771
  28. Saha S, Doe C, Mistry V, Siddiqui S, Parker D, Sleeman M, et al. Granulocyte-macrophage colony-stimulating factor expression in induced sputum and bronchial mucosa in asthma and COPD. Thorax 2009;64:671-676. https://doi.org/10.1136/thx.2008.108290
  29. Zuo L, Lucas K, Fortuna CA, Chuang CC, Best TM. Molecular regulation of Toll-like receptors in asthma and COPD. Front Physiol 2015;6:312.
  30. Ju CR, Liu W, Chen RC. Serum surfactant protein D: biomarker of chronic obstructive pulmonary disease. Dis Markers 2012;32:281-287. https://doi.org/10.1155/2012/509063
  31. More JM, Voelker DR, Silveira LJ, Edwards MG, Chan ED, Bowler RP. Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease. BMC Pulm Med 2010;10:53. https://doi.org/10.1186/1471-2466-10-53
  32. D'Anna SE, Balbi B, Cappello F, Carone M, Di Stefano A. Bacterial-viral load and the 20 immune response in stable and exacerbated COPD: significance and therapeutic prospects. Int J Chron Obstruct Pulmon Dis 2016;11:445-453. https://doi.org/10.2147/copd.s93398
  33. Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One 2012;7:e47305. https://doi.org/10.1371/journal.pone.0047305
  34. Garcia-Nunez M, Millares L, Pomares X, Ferrari R, Perez-Brocal V, Gallego M, et al. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J Clin Microbiol 2014;52:4217-4223. https://doi.org/10.1128/JCM.01967-14
  35. You S, Yoo SA, Choi S, Kim JY, Park SJ, Ji JD, et al. Identification of key regulators for the migration and invasion of rheumatoid synoviocytes through a systems approach. Proc Natl Acad Sci U S A 2014;111:550-555. https://doi.org/10.1073/pnas.1311239111
  36. Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, et al. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2015;136:769-780. https://doi.org/10.1016/j.jaci.2015.01.046
  37. Singh B, Parsaik AK, Mielke MM, Roberts RO, Scanlon PD, Geda YE, et al. Chronic obstructive pulmonary disease and association with mild cognitive impairment: the Mayo Clinic Study of Aging. Mayo Clin Proc 2013;88:1222-1230. https://doi.org/10.1016/j.mayocp.2013.08.012