• Title/Summary/Keyword: Mitochondrial encephalopathy

Search Result 13, Processing Time 0.026 seconds

The First Korean case of combined oxidative phosphorylation deficiency-17 diagnosed by clinical and molecular investigation

  • Kim, Young A;Kim, Yoo-Mi;Lee, Yun-Jin;Cheon, Chong Kun
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.12
    • /
    • pp.408-412
    • /
    • 2017
  • Combined oxidative phosphorylation deficiency-17 (COXPD-17) is very rare and is caused by homozygous or compound heterozygous mutations in the ELAC2 gene on chromosome 17p12. The ELAC2 gene functions as a mitochondrial tRNA processing gene, and only 4 different pathogenic mutations have been reported in ELAC2-associated mitochondrial dysfunction involving oxidative phosphorylation. Affected patients show various clinical symptoms and prognosis, depending on the genotype. We report a novel mutation in the ELAC2 gene (c.95C>G [p.Pro32Arg], het), in an infant with COXPD-17 who presented with encephalopathy including central apnea and intractable epilepsy, and growth and developmental retardation. During hospitalization, consistently elevated serum lactic acid levels were noted, indicative of mitochondrial dysfunction. The patient suddenly died of shock of unknown cause at 5 months of age. This is the first case report of COXPD-17 in Korea and was diagnosed based on clinical characteristics and genetic analysis.

Two Cases of MELAS Syndrome Manifesting Variable Clinical Cour (다양한 임상경과를 보인 멜라스(MELAS, mitochondrial encephalopathy, lactic acidosis, and stroke-like episode) 증후군 2례)

  • Choi, Seo Yeol;Lee, Seung-Ho;Myung, Na-Hye;Lee, Young-Seok;Yu, Jeesuk
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.2
    • /
    • pp.102-108
    • /
    • 2016
  • Mitochondrial encephalopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome is one of mitochondrial encephalopathy. As the early clinical manifestations can be variable, it is important to suspect the disease, especially in patients with multiple organ dysfunctions. A boy was diagnosed with epilepsy when he was 9 years old. Two years later, severe headache and blurred vision developed suddenly. On examination, left homonymous hemianopsia was detected with corresponding cerebral parenchymal lesions in right temporo-occipito-parietal areas. MELAS syndrome was confirmed by genetic test, which showed m.3243 A>G mitochondrial DNA mutation. Multivitamins including coenzyme Q10 were added to anticonvulsant. He experienced 4 more events of stroke-like episodes over 5 years, but he is able to perform normal daily activities. A 13-year-old boy was brought to the hospital due to suddenly developed respiratory arrest and asystole associated with pneumonia. Past medical history revealed that he had multiple medical problems such as epilepsy, failure-to-thrive, optic atrophy, and deafness. He has been on valproic acid as an anticonvulsant which was prescribed from local clinic. He recovered after the resuscitation, but his cognition and motor function were severely damaged. He became bed-ridden. He was diagnosed with MELAS syndrome by brain MRI, muscle biopsy, and clinical features. Genetic test did not reveal any mitochondrial gene mutation. Four years later, he expired due to suddenly developed severe metabolic acidosis combined with hyperglycemic hyperosmolar nonketotic coma. The clinical features of MELAS syndrome are variable. Early diagnosis before the presentation to the grave clinical course may be important for the better clinical outcome.

  • PDF

Identification of a Mitochondrial DNA Mutation in Paraffin-Embedded Muscle Tissues (파라핀조직을 이용한 미토콘드리아 DNA 돌연변이 확인)

  • 김상호;유석호
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.296-300
    • /
    • 2004
  • We investigated feasibility of using the formalin-fixed and paraffin-embedded tissue to study mitochondrial mutations in the case that fresh or frozen tissue, or blood samples are not available. Four paraffin blocks of muscle biopsies in Korean MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) patients were chosen. Total DNA was extracted from these blocks for PCR/RFLP analysis, and sequencing was performed to study the most common mutation, A to G transition at nucleotide position 3243 underlying MELAS in the mitochondrial tRN $A^{Leu(UUR)}$ gene. We could identify the A to G mutation at nt.3243 in three MELAS patients. Our results show that the mitochondrial genome of our paraffin blocks is presumably in good condition. Our results are in accordance with the previous findings by other investigators that PCR allows molecular genetic analysis of paraffin-embedded tissues stored in most histopathology laboratories.s.

Electrocardiography as an early cardiac screening test in children with mitochondrial disease

  • Baik, Ran;Chae, Jung-Hyun;Lee, Young-Mock;Kang, Hoon-Chul;Lee, Joon-Soo;Kim, Heung-Dong
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.5
    • /
    • pp.644-647
    • /
    • 2010
  • Purpose: To evaluate myocardial conductivity to understand cardiac involvement in patients with mitochondrial disease. Methods: We performed retrospective study on fifty-seven nonspecific mitochondrial encephalopathy patients with no clinical cardiac manifestations. The patients were diagnosed with mitochondrial respiratory chain complex defects through biochemical enzyme assays of muscle tissue. We performed standard 12-lead electrocardiography (ECG) on all patients. Results: ECG abnormalities were observed in 30 patients (52.6%). Prolongation of the QTc interval (>440 ms) was seen in 19 patients (33.3%), widening of the corrected QRS interval in 15 (26.3%), and bundle branch block in four (7.0%). Atrioventricular block, premature atrial contraction and premature ventricular contraction were seen in two patients each (3.5%) and Wolff-Parkinson-White syndrome in one patient (1.8%). Conclusion: Given this finding, we recommend active screening with ECG in patients with mitochondrial disease even in patients without obvious cardiac manifestation.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.

Leigh Syndrome Mimicking Wernicke's Encephalopathy: A Case Report (베르니케 뇌병증으로 오인된 리 증후군: 증례 보고)

  • Jisoo Oh;Jinok Choi;Soojung Kim;Eun-ae Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1478-1485
    • /
    • 2020
  • Leigh syndrome or subacute necrotizing encephalomyelopathy is a rare, rapidly progressive neurodegenerative disorder. In general, symptoms such as shortness of breath and decreased cardiac function usually occur within 1 year of life. It is a serious disease with a mortality rate of 75% in 2-3 years. The cause of Leigh syndrome is DNA mutation. Approximately 75% of patients have nuclear DNA mutations while 25% have mitochondrial DNA mutations. Clinical symptoms vary depending on the affected brain area. Neuroimaging plays an important role in diagnosing patients with Leigh syndrome. Late-onset Leigh syndrome is rarer and progresses more slowly compared to the classic form. Here, we report a case of late-onset Leigh's syndrome mimicking Wernicke's encephalopathy.

Effects and Mechanisms of Taurine as a Therapeutic Agent

  • Schaffer, Stephen;Kim, Ha Won
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.225-241
    • /
    • 2018
  • Taurine is an abundant, ${\beta}-amino$ acid with diverse cytoprotective activity. In some species, taurine is an essential nutrient but in man it is considered a semi-essential nutrient, although cells lacking taurine show major pathology. These findings have spurred interest in the potential use of taurine as a therapeutic agent. The discovery that taurine is an effective therapy against congestive heart failure led to the study of taurine as a therapeutic agent against other disease conditions. Today, taurine has been approved for the treatment of congestive heart failure in Japan and shows promise in the treatment of several other diseases. The present review summarizes studies supporting a role of taurine in the treatment of diseases of muscle, the central nervous system, and the cardiovascular system. In addition, taurine is extremely effective in the treatment of the mitochondrial disease, mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and offers a new approach for the treatment of metabolic diseases, such as diabetes, and inflammatory diseases, such as arthritis. The review also addresses the functions of taurine (regulation of antioxidation, energy metabolism, gene expression, ER stress, neuromodulation, quality control and calcium homeostasis) underlying these therapeutic actions.

Mutation analyses in Korean patients with MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes)

  • Yoo, Han-Wook;Kim, Gu-Hwan;Ko, Tae-Sung
    • Journal of Genetic Medicine
    • /
    • v.1 no.1
    • /
    • pp.39-43
    • /
    • 1997
  • The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is inherited maternally, in which the MTTL1*MELAS 3243 mutation has been most commonly found as a heteroplasmy of A to G point mutation in the $tRNA^{Leu(UUR)}$ gene. The MTTL1*MELAS 3271 mutation is known to be the second common mutation, though clinical features of both mutations are not remarkably different. Recently, a variety of minor mutations have been reported in patients with MELAS. In this study, major efforts have been made to investigate the allele frequency of major three mutations including MTTL1*MELAS 3243, 3252, 3271 in 10 Korean families with MELAS probands. The PCR and subsequent direct sequencing of the PCR product in the regions spanning these three mutation sites were employed to identify the mutation in each proband. All family members have been screened for the presence of these three mutations by PCR-RFLP assay using Apa I, Acc I and Bfr I restriction enzymes. The MTTL1*MELAS 3243 mutation was most commonly found (7 out of 10 families tested) followed by the MTTL1*MELAS 3271 which was identified in 1 out of 10 families. In the remaining 2 families none of three mutations were found, indicating the presence of either nuclear mutation or yet unidentified mitochondrial DNA mutation in these families.

  • PDF

Neuroprotective effects of L-carnitine against oxygen-glucose deprivation in rat primary cortical neurons

  • Kim, Yu-Jin;Kim, Soo-Yoon;Sung, Dong-Kyung;Chang, Yun-Sil;Park, Won-Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.7
    • /
    • pp.238-248
    • /
    • 2012
  • Purpose: Hypoxic-ischemic encephalopathy is an important cause of neonatal mortality, as this brain injury disrupts normal mitochondrial respiratory activity. Carnitine plays an essential role in mitochondrial fatty acid transport and modulates excess acyl coenzyme A levels. In this study, we investigated whether treatment of primary cultures of rat cortical neurons with L-carnitine was able to prevent neurotoxicity resulting from oxygen-glucose deprivation (OGD). Methods: Cortical neurons were prepared from Sprague-Dawley rat embryos. L-Carnitine was applied to cultures just prior to OGD and subsequent reoxygenation. The numbers of cells that stained with acridine orange (AO) and propidium iodide (PI) were counted, and lactate dehydrogenase (LDH) activity and reactive oxygen species (ROS) levels were measured. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the terminal uridine deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were performed to evaluate the effect of L-carnitine (1 ${\mu}M$, 10 ${\mu}M$, and 100 ${\mu}M$) on OGD-induced neurotoxicity. Results: Treatment of primary cultures of rat cortical neurons with L-carnitine significantly reduced cell necrosis and prevented apoptosis after OGD. L-Carnitine application significantly reduced the number of cells that died, as assessed by the PI/AO ratio, and also reduced ROS release in the OGD groups treated with 10 ${\mu}M$ and 100 ${\mu}M$ of L-carnitine compared with the untreated OGD group (P<0.05). The application of L-carnitine at 100 ${\mu}M$ significantly decreased cytotoxicity, LDH release, and inhibited apoptosis compared to the untreated OGD group (P<0.05). Conclusion: L-Carnitine has neuroprotective benefits against OGD in rat primary cortical neurons in vitro.