DOI QR코드

DOI QR Code

Effects and Mechanisms of Taurine as a Therapeutic Agent

  • Schaffer, Stephen (Department of Pharmacology, College of Medicine, University of South Alabama) ;
  • Kim, Ha Won (Department of Life Science, University of Seoul)
  • Received : 2017.12.18
  • Accepted : 2018.01.31
  • Published : 2018.05.01

Abstract

Taurine is an abundant, ${\beta}-amino$ acid with diverse cytoprotective activity. In some species, taurine is an essential nutrient but in man it is considered a semi-essential nutrient, although cells lacking taurine show major pathology. These findings have spurred interest in the potential use of taurine as a therapeutic agent. The discovery that taurine is an effective therapy against congestive heart failure led to the study of taurine as a therapeutic agent against other disease conditions. Today, taurine has been approved for the treatment of congestive heart failure in Japan and shows promise in the treatment of several other diseases. The present review summarizes studies supporting a role of taurine in the treatment of diseases of muscle, the central nervous system, and the cardiovascular system. In addition, taurine is extremely effective in the treatment of the mitochondrial disease, mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and offers a new approach for the treatment of metabolic diseases, such as diabetes, and inflammatory diseases, such as arthritis. The review also addresses the functions of taurine (regulation of antioxidation, energy metabolism, gene expression, ER stress, neuromodulation, quality control and calcium homeostasis) underlying these therapeutic actions.

Keywords

Acknowledgement

Supported by : Dong-A Pharmaceutical Company, Ltd

References

  1. Abramov, A. Y. and Duchen, M. R. (2008) Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim. Biophys. Acta 1777, 953-964. https://doi.org/10.1016/j.bbabio.2008.04.017
  2. Abramov, A. Y., Scorziello, A. and Duchen, M. R. (2007) Three distinct mechanisms generate oxygen free radicals in neurons and con-tribute to cell death during anoxia and reoxygenation. J. Neurosci. 27,1129-1138. https://doi.org/10.1523/JNEUROSCI.4468-06.2007
  3. Ahmadian, M., Roshan, D. and Ashourpore, E. (2017) Taurine supplementation improves functional capacity, myocardial oxygen consumption and electrical activity in heart failure. J. Diet. Suppl. 14, 422-432. https://doi.org/10.1080/19390211.2016.1267059
  4. Airaksinen, E. M., Oja, S. S., Marnela, K.-M., Leino, E. and Paakkonen, L. (1980) Effects of taurine treatment on epileptic patients. Prog. Clin. Biol. 39, 157-166.
  5. Albrecht, J. and Schousboe, A. (2005) Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem. Res. 30, 1615-1621. https://doi.org/10.1007/s11064-005-8986-6
  6. Alkholifi, F. K. and Albers, D. S. (2015) Attenuation of rotenone toxicity in SY5Y cells by taurine and N-acetyl cysteine alone or in combination. Brain Res. 1622, 409-413. https://doi.org/10.1016/j.brainres.2015.06.041
  7. Alleyne, T., Mohan, N., Joseph, J. and Adogwa, A. (2011) Unraveling the role of metal ions and low catalytic activity of cytochrome C oxidase in Alzheimer's disease. J. Mol. Neurosci. 43, 284-289. https://doi.org/10.1007/s12031-010-9436-8
  8. Aon, M. K. A., Tocchetti, C. G., Bhatt, N., Paolocci, N. and Cortassa, S. (2015) Protective mechanisms of mitochondria and heart function in diabetes. Antioxid. Redox Signal. 22, 1563-1586. https://doi.org/10.1089/ars.2014.6123
  9. Arrieta, F., Balsa, J. A., de la Puerta, C., Botella, J. I., Zamarron, I., Elias, E., Del Rio, J. I., Alonso, P., Candela, A., Blanco-Colio, L. M., Eqido, J., Navarro, P. and Vazquez, C. (2014) Phase IV prospective clinical study to evaluate the effect of taurine on liver function in postsurgical adult patients requiring parenteral nutrition. Nutr. Clin. Pract. 29, 672-680. https://doi.org/10.1177/0884533614533610
  10. Azuma, J., Sawamura, A. and Awata, N. (1992) Usefulness of taurine in chronic congestive heart failure. Jpn. Circ. J. 56, 95-99. https://doi.org/10.1253/jcj.56.95
  11. Bai, J., Yao, X., Jiang, L., Zhang, Q., Guan, H., Liu, S., Wu, W., Qiu, T., Gao, N., Yang, L., Yang, G. and Sun, X. (2016) Taurine protects against $As_2O_3$-induced autophagy in livers of rat offsprings through PPARΥ pathway. Sci. Rep. 6, 27733. https://doi.org/10.1038/srep27733
  12. Balshaw, T. G., Bampouras, T. M., Barry, T. J. and Sparks, S. A. (2013) The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids 44, 555-561. https://doi.org/10.1007/s00726-012-1372-1
  13. Barbeau, A. and Donaldson, J. (1974) Zinc, taurine and epilepsy. Arch. Neurol. 30, 52-58. https://doi.org/10.1001/archneur.1974.00490310054009
  14. Barua, M., Liu, Y. and Quinn, M. R. (2001) Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophagesdecreased NF-KappaB activation and IkappaB kinase activity. J. Immunol. 167, 2275-2281. https://doi.org/10.4049/jimmunol.167.4.2275
  15. Bellentani, S., Pecorari, M., Cordonna, P., Marchegiano, P., Manenti, F., Basisio, E., Defabiani, E. and Galli, G. (1987) Taurine increases bild acid poll size and reduces bile saturation index in the hamster. J. Lipid Res. 28, 1021-1027.
  16. Bergamini, L., Mutani, R., Delsedime, M. and Durelli, L. (1974) First clinical experience on the antiepileptic action of taurine. Eur. Neurol. 11, 261-269. https://doi.org/10.1159/000114324
  17. Blake, D. J., Weir, A., Newey, S. E. and Davies, K. E. (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82, 291-329. https://doi.org/10.1152/physrev.00028.2001
  18. Bouckenooghe, T., Remacle, C. and Reusens, B. (2006) Is taurine a functional nutrient? Curr. Opin. Clin. Nutr. Metab. Care 9, 728-733. https://doi.org/10.1097/01.mco.0000247469.26414.55
  19. Boudini, S., Sena, S., Theoblad, H., Sheng, X., Wright, J. J., Hu, X. X., Aziz, S., Johnson, J. I., Bugger, H., Zaha, V. G. and Abel, E. D. (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56, 2457-2466. https://doi.org/10.2337/db07-0481
  20. Brownlee, M. (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615
  21. Cannon, J. R., Tapias, V., Na, H. M., Honick, A. S., Drolet, R. E. and Greenamyre, J. T. (2009) A highly reproducible rotenone model of Parkinson's disease. Neurobiol. Dis. 34, 279-290. https://doi.org/10.1016/j.nbd.2009.01.016
  22. Chan, C. Y., Sun, H. S., Shah, S. M., Agovic, M. S., Ho, I., Friedman, E. and Banerjee, S. P. (2013) Direct interaction of taurine with the NMDA glutamate receptor subtype via multiple mechanisms. Adv. Exp. Med. Biol. 775, 45-52
  23. Chazov, E. I., Malchikova, L. S., Lipina, N. V., Asafov, G. B. and Smirnov, V. N. (1974) Taurine and electrical activity of the heart. Circ. Res. 35 Suppl 3, 11-21.
  24. Chen, W., Guo, J., Zhang, Y. and Zhang, J. (2016) The beneficial effects of taurine in preventing metabolic syndrome. Food Funct. 7, 1849-1863. https://doi.org/10.1039/C5FO01295C
  25. Chiang, S. T. H., Yeh, S. M., Chen, Y. C. and Lin, S. L., Tseng, J. K. (2014) Investigation of the protective effects of taurine against alloxan-induced dia betic retinal changes via electroretinogram and retinal histology with New Zealand White rabbits. Int. J. Endocrinol. 2014, 631549.
  26. Chorazy-Massalska, M., Kontny, E., Kornatka, A., Rell-Bakalarska, M., Marcinkiewicz, J. and Maslinski, W. (2004) The effect of taurine chloramine on pro-inflammatory cytokine production by peripheral blood mononuclear cells isolated from rheuatoid arthritis and osteoarthritis patients. Clin. Exp. Rheumatol. 22, 692-698.
  27. Conte-Camerino, D., DeLuca, A., Mambrini, M., Ferrannini, E., Franconi, F, Giotta, A. and Bryant, S. H. (1989) The effects of taurine on pharmacologically induced myotonia. Muscle Nerve 12, 898-904. https://doi.org/10.1002/mus.880121105
  28. Coughlan, M. T., Higgins, G. C., Nguyen, T. V., Penfold, S. A., Thallas- Bonke, V., Tan, S. M. et al. (2016) Deficiency in apoptosis-inducing factor recapitulates chronic kidney disease via aberrant mitochondrial homeostasis. Diabetes 65, 1085-1098. https://doi.org/10.2337/db15-0864
  29. Cuisinier, C., Gailly, P., Francaux, M. and Lebacq, J. (2000) Effects of guanidinoethane sulfonate on contraction of skeletal muscle. Adv. Exp. Med. Biol. 483, 403-409.
  30. Czajka, A. and Malik, A. N. (2016) Hyperglycemia damage to mitochondrial respiration in renal mesangial and tubular cells: implication for diabetic nephropathy. Redox. Biol. 10, 100-107. https://doi.org/10.1016/j.redox.2016.09.007
  31. da Silva, L. A., Tromm, C. B., Bom, K. F., Mariano, I., Po0zzi, B., da Rosa, G. L., Tuon, T., da Luz, G., Vuolo, F., Petronilho, F., Cassiano, W., De Souza, C. T. and Pinho, R. A. (2014) Effects of taurine supplementation following eccentric exercise in young adults. Appl. Physiol. Nutr. Metab. 39, 101-104. https://doi.org/10.1139/apnm-2012-0229
  32. Damiano, M., Galvan, L., Deglon, N. and Brouillet, E. (2010) Mitochondria in Huntington's disease. Biochim. Biophys. Acta 1802, 52-61. https://doi.org/10.1016/j.bbadis.2009.07.012
  33. Das, J. and Sil, P. C. (2012) Taurine ameliorates alloxan-induced renal injury, oxidative stress-related signaling pathways and apoptosis in rats. Amino Acids 43, 1509-1523. https://doi.org/10.1007/s00726-012-1225-y
  34. Dawson, R., Jr., Biasetti, M., Messina, S. and Dominy, J. (2002) The cytoprotective role of taurine in exercise-induced muscle injury. Amino Acids 22, 309-324. https://doi.org/10.1007/s007260200017
  35. Dawson, R., Jr., Liu, S., Jung, B., Messina, S. and Eppler, B. (2000) Effects of high salt diets and taurine on the development of hypertension in the stroke-prone spontaneously hypertensive rat. Amino Acids 19, 643-664. https://doi.org/10.1007/s007260070014
  36. DeLuca, A., Pierno, S. and Conte Camerino, D. (2015) Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J. Transl. Med. 13, 243. https://doi.org/10.1186/s12967-015-0610-1
  37. DeLuca, A., Piernon, S., Liantonio, A., Cetrone, M., Camerion, C., Bodvael, F., Mirabella, M., Servidei, S., Ruegg, U. T. and Conte Camerino, D. (2003) Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1. J. Pharmacol. Exp. Therap. 304, 453-463. https://doi.org/10.1124/jpet.102.041343
  38. Durelli, L., Mutani, R. and Fassio, F. (1983) The treatment of myotonia: evaluation of chronic oral taurine therapy. Neurology 33, 599-603.
  39. Dutka, T. L., Lamboley, C. R. l., Murphy, R. M. and Lamb, G. D. (1985) Acute effects of taurine on sarcoplasmic reticulum $Ca^{2+}$ accumulation and contractility in human type I and type II skeletal muscle fibers. J. Appl. Physiol. 117, 797-805.
  40. Eby, G. and Halcomb, W. W. (2006) Elimination of cardiac arrhythmias using oral taurine with L-arginine with case histories: hypothesis for nitric oxide stabilization of the sinus node. Med. Hypotheses 67, 1200-1204. https://doi.org/10.1016/j.mehy.2006.04.055
  41. El Idrissi, A. and L'Amoreaux, W. J. (2008) Selective resistance of taurine- fed mice to isoniazide-potentiated seizures: in vivo functional test for the activity of glutamic acid decarboxylase. Neuroscience 156, 693-699. https://doi.org/10.1016/j.neuroscience.2008.07.055
  42. El Idrissi, A., Messing, J., Scalia, J. and Trenkner, E. (2003) Prevention of epileptic seizures by taurine. Adv. Exp. Med. Biol. 526, 515-525.
  43. Elvevoll, E. O., Eilertsen, K. E., Brox, J., Dragnes, B. T., Falkenberg, P., Olsen, J. O., Kirkhus, B., Lamglait, A. and Osterud, B. (2008) Seafood diets: and antiatherogenic effects of taurine and n-3 fatty acids. Atherosclerosis 200, 396-402. https://doi.org/10.1016/j.atherosclerosis.2007.12.021
  44. Franconi, F., Bennardini, F. and Mattana, A., Miceli, M., Ciuti, M., Mian, M., Gironi, A., Anichini, R. and Seghieri, G. (1995) Plasma and platelet taurine are related in subjects with insulin-dependent diabetes mellitus: effect of taurine supplementation. Am. J. Clin. Nutr. 61, 1115-1119. https://doi.org/10.1093/ajcn/61.5.1115
  45. Froger, N., Cadetti, L., Lorach, H., Martins, J., Bemelmans, A. P., Dubus, E., Degardin, J., Pain, D., Forster, V., Chicaud, L., Ivokovic, I., Simonutti, M., Fouquet, S., Jammoul, F., Leveillard, T., Benosman, R., Sahel, J. A. and Picaud, S. (2012) Taurine provides neuroprotection against retinal ganglion cell degradation. PLoS ONR 7, e42017. https://doi.org/10.1371/journal.pone.0042017
  46. Froger, N., Moutsimilli, L., Cadetti, L., Jammoul, F., Wang, Q. P., Fan, Y., Gaucher, D., Rosolen, S. G., Neveux, N., Cynober, L.. Sahel, J. A. and Picaud, S. (2014) Taurine: the comeback of a neutraceutical in the prevention of retinal degenerations. Prog. Retin. Eye Res. 41, 44-63. https://doi.org/10.1016/j.preteyeres.2014.03.001
  47. Fujita, T. and Sato, Y. (1986) Changes in blood pressure and extracellular fluid with taurine in DOCA-salt rats. Am. J. Physiol. 250, R1014-R1020.
  48. Furukawa, T., Yamada, J., Akita, T., Matsushima, Y., Yanagawa, Y. and Fukuda, A. (2014) Role of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex. Front. Cell. Neurosci. 8, 88.
  49. Gaull, G. E. (1986) Taurine as a conditionally essential nutrient in man. J. Am. Coll. Nutr. 5, 121-125. https://doi.org/10.1080/07315724.1986.10720119
  50. Gaull, G. E. (1989) Taurine in pediatric nutrition: review and update. Pediatrics 83, 433-442.
  51. Gharibani, P. M., Modi, J., Pan, C., Menzie, J., Ma, Z., Chen, P. C., Tao, R., Prentice, H. and Wu, J. Y. (2013) The mechanism of taurine protection against endoplasmic reticulum stress in an animal stroke model of cerebral artery occlusion and stroke-related conditions in primary neuronal cell culture. Adv. Exp. Med. Biol. 776, 241-258.
  52. Gharibani, P., Modi, J., Menzie, J., Alexandrescu, A., Ma, Z., Tao, R., Prentice, H. and Wu, J. Y. (2015) Comparison between single and combined post-treatment with S-Methyl-N,N-diethylthiolcarbamate sulfoxide and taurine following transient focal cerebral ischemia in rat brain. Neuroscience 300, 460-473. https://doi.org/10.1016/j.neuroscience.2015.05.042
  53. Ginguay, A., De Bandt, J. P. and Cynober, L. (2016) Indications and contraindications for infusing specific amino acids. (leucine, glutamine, arginine, citrulline and taurine) in critical illness. Curr. Opin. Clin. Nutr. Metab. Care 19, 161-169. https://doi.org/10.1097/MCO.0000000000000255
  54. Gokce, G., Ozsarlak-Sozer, G., Oran, I., Oktay, G., Ozkal, S. and Kerry, Z. (2011) Taurine suppresses oxidative stress-potentiated expression of lectin-like oxidized low-density lipoprotein receptor and restensosis in balloon-injured rabbit iliac artery. Clin. Expt. Pharmacol. Physiol. 38, 811-818. https://doi.org/10.1111/j.1440-1681.2011.05612.x
  55. Goodman, C. A., Horvath, D., Stathis, C., Mori, T., Croft, K., Murphy, R. M. and Hayes, A. (1985) Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. J. Appl. Physiol. 107, 144-154.
  56. Haber, C. A., Lam, T. K., Yun, Z., Gupta, N., Goh, T., Bogdanovic, E., Giacca, A. and Fantus, I. G. (2003) N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am. J. Physiol. 285, E744-E753.
  57. Hadj-Said, W., Froger, N., Ivkovic, I., Jimenez-Lopez, M., Dubus, E., Degardin-Chicaud, J., Simonutti, M., Quenol, C., Neveux, N., Villegas- Perez, M. P., Agudo-Barriuso, M., Vidal-Sanz, M., Sahel, J. A., Picaud, S. and Garcia-Ayuso, D. (2016) Quantitative and topographical analysis of the losses of cone photoreceptors and retinal ganglion cells under taurine depletion. Invest. Ophthalmol. Vis. Sci. 57, 4692-4703. https://doi.org/10.1167/iovs.16-19535
  58. Hagar, H. H., El Etter, E. and Arafa, M. (2006) Taurine attenuates hypertension and renal dysfunction induced by cyclosporine A in rats. Clin. Exp. Pharmacol. Physiol. 33, 189-196. https://doi.org/10.1111/j.1440-1681.2006.04345.x
  59. Hallan, S. and Sharma, K. (2016) The role of mitochondria in diabetic kidney disease. Curr. Diab. Rep. 16, 61. https://doi.org/10.1007/s11892-016-0748-0
  60. Hamilton, E. J., Berg, H. M., Easton, C. J. and Bakker, A. J. (2006) The effect of taurine depletion on the contractile properties and fatigue in fast-twitch skeletal muscle of the mouse. Amino Acids 31, 273-278. https://doi.org/10.1007/s00726-006-0291-4
  61. Han, X. and Chesney, R. W. (2012) The role of taurine in renal disorders. Amino Acids 43, 2249-2263. https://doi.org/10.1007/s00726-012-1314-y
  62. Han, X., Patters, A. B., Ito, T., Azuma, J., Schaffer, S. W. and Chesney, R. W. (2015) Knockout of the TauT gene predisposes C57BL/6 mice to streptozotocin-induced diabetic nephropathy. PLoS ONE 10, e0117718. https://doi.org/10.1371/journal.pone.0117718
  63. Han, Z., Gao, L. Y., Lin, Y. H., Chang, L., Wu, H.Y., Luo, C. X. and Zhu, D. Y. (2016) Neuroprotection of taurine against reactive oxygen species is associated with inhibiting NADPH oxidases. Eur. J. Pharmacol. 777, 129-135. https://doi.org/10.1016/j.ejphar.2016.03.006
  64. Hara, M. R. and Snyder, S. H. (2007) Cell signaling and neuronal death. Ann. Rev. Pharmacol. Toxicol. 47, 117-141. https://doi.org/10.1146/annurev.pharmtox.47.120505.105311
  65. Harada, H., Isujino, T., Watari, Y., Nonaka, H., Emoto, N. and Yokoyama, M. (2004) Oral taurine supplementation prevents fructose-induced hypertension in rats. Heart Vessels 19, 132-136. https://doi.org/10.1007/s00380-003-0757-1
  66. Hayes, K. C., Carey, R. E. and Schmidt, S. Y. (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188, 949-951. https://doi.org/10.1126/science.1138364
  67. Heim, M. K. and Gidal, B. E. (2012) Vigabatrin-associated retinal damage: potential biochemical mechanisms. Acta Neurol. Scand. 126, 219-228.
  68. Higgins, G. C. and Coughlan, M. T. (2014) Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br. J. Pharmacol. 171, 1917-1942. https://doi.org/10.1111/bph.12503
  69. Horvath, D. M., Murphy, R. M., Mollica, J. P., Hayes, A. and Goodman, C. A. (2016) The effect of taurine and b-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice. Amino Acids 48, 2635-2645. https://doi.org/10.1007/s00726-016-2292-2
  70. Horvath, G. A., Hukin, J., Stockler-Ipsiroglu, S. G. and Aroichane, M. (2016) Eye findings on vigabatrin and taurine treatment in two patients with succinic semialdehyde dehydrogenase deficiency. Neuropediatrics 47, 263-267. https://doi.org/10.1055/s-0036-1583183
  71. Hu, J., Xu, X., Yang, J., Wu, G., Sun, C. and Lv, Q. (2009) Antihypertensive effect of taurine in rat. Adv. Exp. Med. Biol. 643, 75-84.
  72. Ideishi, M., Miura, S., Sakai, T., Sasaguri, M., Misumi, Y. and Arakawa, K. (1994) Taurine amplifies renal kallikrein and prevents salt-induced hypertension in Dahl rats. J. Hypertens. 12, 653-661.
  73. Ikubo, N., Saito, M., Tsounapi, P., Dimitriadis, F., Ohmasa, F., Inoue, S., Shimizu, S., Kinoshita, Y. and Satoh, K. (2011) Protective effect of taurine on diabetic rat endothelial dysfunction. Biomed. Res. 32, 187-193. https://doi.org/10.2220/biomedres.32.187
  74. Imai, M., Asano, T. and Murakami, S. (2014) Potential role of taurine in prevention of diabetes and metabolic syndrome. Amino Acids 46, 81-88. https://doi.org/10.1007/s00726-012-1434-4
  75. Ishikura, K., Miyazaki, T., Ra, S. G., Endo, S., Nakamura, Y., Matsuzaka, T., Miyakawa, S. and Ohmori, H. (2011) Effect of supplementation on the alterations in amino acid content in skeletal muscle with exercise in rat. J. Sports Sci. Med. 10, 306-314.
  76. Ito, T., Kimura, Y., Uozumi, Y., Takai, M., Muraoka, S., Matsuda, T., Ueki, K., Yoshiyama, M., Ikawa, M., Okabe, M., Schaffer, S. W., Fujio, Y. and Azuma, J. (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J. Mol. Cell Cardiol. 44, 927-937. https://doi.org/10.1016/j.yjmcc.2008.03.001
  77. Ito, T., Miyazaki, N., Schaffer, S. and Azuma, J. (2015a) Potential antiaging role of taurine via proper protein folding: a study from taurine transporter knockout mouse. Adv. Exp. Med. Biol. 803, 481-487.
  78. Ito, T., Schaffer, S. W. and Azuma, J. (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42, 1529-1539. https://doi.org/10.1007/s00726-011-0883-5
  79. Ito, T., Yoshikawa, N., Inui, T., Miyazaki, N., Schaffer, S. W. and Azuma, J. (2014a) Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice. PLoS ONE 9, e107409. https://doi.org/10.1371/journal.pone.0107409
  80. Ito, T., Yoshikawa, N., Ito, H., Schaffer, S. W. (2015b) Impact of taurine depletion on glucose control and insulin secretion in mice. J. Pharmacol. Sci. 129, 59-64. https://doi.org/10.1016/j.jphs.2015.08.007
  81. Ito, T., Yoshikawa, N., Schaffer, S. W. and Azuma, J. (2014b) Tissue taurine depletion alters metabolic response to exercise and reduces running capacity in mice. J. Amino Acids 2014, 964680.
  82. Jeejeebhoy, F., Keith, M., Freeman, M., Barr, A., McCall, M., Kurian, R., Mazer, D. and Errett, L. (2002) Nutritional supplementation with MyoVive repletes essential cardiac myocyte nutrients and reduces left ventricular size in patients with left ventricular dysfunction. Am. Heart J. 143, 1092-1100. https://doi.org/10.1067/mhj.2002.121927
  83. Jong, C. J., Azuma, J. and Schaffer, S. W. (2012) Mechanism underly-ing the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42, 2223-2232. https://doi.org/10.1007/s00726-011-0962-7
  84. Jong, C. J., Ito, T. and Schaffer, S. W. (2015) The ubiquitin-proteasome system and autophagy are defective in the taurine-deficient heart. Amino Acids 47, 2609-2622. https://doi.org/10.1007/s00726-015-2053-7
  85. Junyent, F., Romero, R., De Lemos, L., Ultrera, J., Camins, A., Pallas, M. and Auladell, C. (2010) Taurine treatment inhibits CaMKII activity and modulates the presence of calbindin D28k, calretinin and parvalbumin in the brain. J. Neurosci. Res. 88, 136-142. https://doi.org/10.1002/jnr.22192
  86. Junyent, F., Ultrera, J., Romero, R., Pallas, M., Camins, A., Duque, D. and Auladell, C. (2009) Prevention of epilepsy by taurine treatments in mice experimental model. J. Neurosci. Res. 87, 1500- 1508. https://doi.org/10.1002/jnr.21950
  87. Katakawa, M., Fukuda, N., Tsunemi, A., Mori, M., Maruyama, T., Matsumoto, T., Abe, M. and Yamori, Y. (2016) Taurine and magnesium supplementation enhances the function of endothelial progenitor cells through antioxidation in healthy men and spontaneously hypertensive rats. Hypertens Res. 39, 848-856. https://doi.org/10.1038/hr.2016.86
  88. Kato, T., Okita, S., Wang, S., Tsunekawa, M. and Ma, N. (2015) The effects of taurine administraiton against inflammation in heavily exercised skeletal muscle of rats. Adv. Exp. Med. Biol. 803, 773-784.
  89. Kim, C. and Cha, Y. N. (2014) Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids 46, 89-100. https://doi.org/10.1007/s00726-013-1545-6
  90. Kim, K. S., Oh, D. H., Kim, J. Y., Lee, B. G., You, J. S., Chang, K. J., Chung, H. J., Yoo, M. C., Yang, H. I., Kang, J. H., Hwang, Y. C., Ahn, K. J., Chung, H. Y. and Jeong, I. K.. (2012) Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty. (OLETF) rats with long-term diabetes. Exp. Mol. Med. 44, 665-673. https://doi.org/10.3858/emm.2012.44.11.075
  91. Kim, K. S., Park, E. K., Ju, S. M., Jung, H. S., Bang, J. S., Kim, C., Lee, Y. A., Hong, S. J., Lee, S. H., Yang, H. I. and Yoo, M. C. (2007) Taurine chloramine differentially inhibits matrix metalloproteinase 1 and 13 synthesis in interleukin-1b stimulated fibroblast-like synoviocytes. Arthritis Res. Ther. 9, R80. https://doi.org/10.1186/ar2279
  92. Kirino, Y., Goto, Y., Campos, Y., Arenas, J. and Suzuki, T. (2005) Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc. Natl. Acad. Sci. U.S.A. 102, 7127-7132. https://doi.org/10.1073/pnas.0500563102
  93. Klamt, F. and Shacter, E. (2005) Taurine chloramine: an oxidant derived from neutrophils induces apoptosis in human B lymphoma cells through mitochondrial damage. J. Biol. Chem. 280, 21346- 21352. https://doi.org/10.1074/jbc.M501170200
  94. Koh, J. H., Lee, E. S., Hyun, M., Kim, H. M., Choi, Y. J., Lee, E. Y., Yadav, D. and Chung, C. H. (2014) Taurine alleviates the progression of diabetic nephropathy in type 2 diabetic rat model. Int. J. Endocrinol. 2014, 397307.
  95. Konig, P., Kriechbaum, G., Presslich, O., Schubert, H., Schuster, P. and Sieghart, W. (1977) Orally-administered taurine in therapyresistant epilepsy. Wien. Klin. Wochenschr. 89, 111-113.
  96. Kurata, S., Ohtsuki, T., Wada, T., Kirino, Y., Takai, K., Saigo, K., Watanabe, K. and Suzuki, T. (2003) Decoding property of C5 uridine modification at the wobble position of tRNA anticodon. Nucleic Acids Res. 3, 245-246. https://doi.org/10.1093/nass/3.1.245
  97. L'Amoreaux, W. J., Marsillo, A. and El Idrissi, A. (2010) Pharmacological characterization of $GABA_A$ receptors in taurine-fed mice. J. Biomed. Sci. 17, S14. https://doi.org/10.1186/1423-0127-17-S1-S14
  98. Lam, N. V., Chen, W., Suruga, K., Nishimura, N., Goda, T. and Yokogoshi, H. (2006) Enhancing effect of taurine on CYP7A1 mRNA expression in Hep G2 cells. Amino Acids 30, 43-48. https://doi.org/10.1007/s00726-005-0244-3
  99. Li, Y., Hu, Z., Chen, B., Bu, Q., Lu, W., Deng, Y., Zhu, R., Shao, X., Hou, J., Zaho, J., Li, H., Zhang, B., Huang, Y., Lv, L., Zhao, Y. and Cen, X. (2012) Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway. Toxicol. Lett. 215, 1-7. https://doi.org/10.1016/j.toxlet.2012.09.019
  100. Lindblom, R., Higgins, G., Coughlan, M. and de Haan, J. B. (2015) Targeting mitochondria and reactive oxygen species-driven pathogenesis in diabetic nephropathy. Rev. Diabet. Stud. 12, 134-156 https://doi.org/10.1900/RDS.2015.12.134
  101. Lombardini, J. B. (1996) Taurine depletion in the intact animal stimulates in vitro phosphorylation of an approximately 44-kDa protein present in the mitochondrial fraction of the rat heart. J. Mol. Cell. Cardiol. 28, 1957-1961. https://doi.org/10.1006/jmcc.1996.0188
  102. Maia, A. R., Batista, T. M., Victorio, J. A., Clerici, S. P., Delbin, M. A., Carneiro, E. M. and Davel, A. P. (2014) Taurine supplementation reduces blood pressure and prevents endothelial dysfunction and oxidative stress in post-weaning protein restricted rats. PLoS ONE 9, e105851. https://doi.org/10.1371/journal.pone.0105851
  103. Malik, A. N., Parsade, C. K., Ajaz, S., Crosby-Nwaobi, R. C., Gnudi, L., Czajka, A. and Sivaprasad, S. (2015) Altered circulating mitochondrial DNA and increased inflammation in patients with diabetic retinopathy. Diabetes Res. Clin. Pract. 110, 257-265. https://doi.org/10.1016/j.diabres.2015.10.006
  104. Mantovani, J. and DeVivo, D. C. (1979) Effects of taurine on seizures and growth hormone release in epileptic patients. Arch. Neurol. 36, 672-674. https://doi.org/10.1001/archneur.1979.00500470042006
  105. Marcinkiewicz, J. and Kontny, E. (2014) Taurine and inflammatory diseases. Amino Acids 46, 7-20. https://doi.org/10.1007/s00726-012-1361-4
  106. Marcinkiewicz, J., Grabowska, A., Bereta, J. and Stelmaszynska, T. (1995) Taurine chloramine a product of activated neutrophils inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators. J. Leukoc. Biol. 58, 667-674. https://doi.org/10.1002/jlb.58.6.667
  107. McCarty, M. F. (2013) Nutraceutical strategies for ameliorating the toxic effects of alcohol. Med. Hypotheses 80, 456-462. https://doi.org/10.1016/j.mehy.2012.12.040
  108. Menzie, J., Prentice, H. and Wu, J. Y. (2013) Neuroprotective mechanisms of taurine against ischemic stroke. Brain Sci. 3, 877-907. https://doi.org/10.3390/brainsci3020877
  109. Milei, J., Ferreira, R., Llesuy, S., Forcada, P., Covarrubias, J. and Boveris, A. (1992) Reduction of reperfusion injury with preoperative rapid intravenous infusion of taurine during myocardial revascularization. Am. Heart J. 123, 339-345. https://doi.org/10.1016/0002-8703(92)90644-B
  110. Modi, P. and Suleiman, M. S. (2004) Myocardial taurine, development and vulnerability to ischemia. Amino Acids 26, 65-70. https://doi.org/10.1007/s00726-003-0031-y
  111. Moore, K. J. and Tabas, I. (2011) The cellular biology of macrophages in atherosclerosis. Cell 145, 341-355. https://doi.org/10.1016/j.cell.2011.04.005
  112. Mozaffari, M. S., Patel, C., Abdelsayed, R. and Schaffer, S. W. (2006) Accelerated NaCl-induced hypertension in taurine-deficient rat: role of renal function. Kidney Int. 70, 329-337. https://doi.org/10.1038/sj.ki.5001503
  113. Murakami, S. (2015) Role of taurine in the pathogenesis of obesity. Mol. Nutr. Food Res. 59, 1353-1363. https://doi.org/10.1002/mnfr.201500067
  114. Murakami, S., Nara, Y. and Yamori, Y. (1996) Taurine accelerates the regression of hypercholesterolemia in stroke-prone spontaneously hypertensive rats. Life Sci. 58, 1643-1651. https://doi.org/10.1016/0024-3205(96)00139-7
  115. Murakami, S., Sakurai, T., Tomoike, H., Sakono, M., Nasu, T. and Fukuda, N. (2010) Prevention of hypercholesterolemia and atherosclerosis in the hyperlipidemia- and atherosclerosis-prone Japanese (LAP) quail by taurine supplementation. Amino Acids 38, 271-278. https://doi.org/10.1007/s00726-009-0247-6
  116. Nakaya, Y., Minami, A., Harada, N., Sakamoto, S., Niwa, Y. and Ohnaka, M. (2000) Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am. J. Clin. Nutr. 71, 54-58. https://doi.org/10.1093/ajcn/71.1.54
  117. Nara, Y., Yamori, Y. and Lovenberg, W. (1978) Effect of dietary taurine on blood pressure in spontaneously hypertensive rats. Biochem. Pharmacol. 27, 2689-2692. https://doi.org/10.1016/0006-2952(78)90043-6
  118. Neuwirth, L. S., Volpe, N. P., Ng, S., Marsillo, A., Corwin, C., Madan, N., Ferraro, A. M. and El Idrissi, A. (2015) Taurine recovers mice emotional learning and memory disruptions associated with fragile X syndrome in context gear and auditory-cued conditioning. Adv. Exp. Med. Biol. 803, 425-438.
  119. Novotny, M. J., Hogan, P. M., Paley, D. M. and Adams, H. R. (1991) Systolic and diastolic dysfunction of the left ventricle induced by dietary taurine deficiency in cats. Am. J. Physiol. 261, H121-H127.
  120. Ogawa, M., Takahara, A., Ishijima, M. and Tazaki, S. (1985) Decrease of plasma sulfur amino acids in essential hypertension. Jpn. Circ. J. 49, 1217-1224. https://doi.org/10.1253/jcj.49.1217
  121. Oja, S. S. and Saransaari, P. (2013) Taurine and epilepsy. Epilepsy Res. 104, 187-194. https://doi.org/10.1016/j.eplepsyres.2013.01.010
  122. Oprescu, A. I., Bikopoulos, G., Naassan, A., Allister, E. M., Tang, C., Park, E., Uchino, H., Lewis, G. F., Fantus, I. G., Rozakis-Adcock, M., Wheeler, M. B. and Giacca, A. (2007) Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes 56, 2927-2937. https://doi.org/10.2337/db07-0075
  123. Oriyanhan, W., Yamazaki, K., Miwa, S., Takaba, K., Ikeda, T. and Komeda, M. (2005) Taurine prevents myocardial ischemia/reperfusioninduced oxidative stress and apoptosis in prolonged hypothermic rat heart preservation. Heart Vessels 20, 278-285. https://doi.org/10.1007/s00380-005-0841-9
  124. Pandya, K. G., Budhram, R., Clark, G., Lau-Cam, C. A. (2013) Comparative evaluation of taurine and thiotaurine as protectants against diabetes-induced nephropathy in a rat model. Adv. Exp. Med. Biol. 775, 371-394.
  125. Park, E., Park, S. Y., Dobkin, C. and Schuller-Levis, G. (2014) Development of a novel cysteine sulfinic acid decarboxylase knockout mouse: dietary taurine reduces neonatal mortality. J. Amino Acids 2014, 346809.
  126. Park, E., Quinn, M. R. and Schuller-Levis, G. (2000) Taurine chloramine attenuates the hydrolytic activity of matrix metalloproteinase- 9 in LPS-activated murine peritoneal macrophages. Adv. Exp. Med. Biol. 483, 389-398.
  127. Park, E., Schuller-Levis, G. l., Jia, J. H. and Quinn, M. R. (1997) Preactivation exposure of RAW 264.7 cells to taurine chloramine attenuates subsequent production of nitric oxide and expression of iNOS mRNA. J. Leukoc. Biol. 61,161-166. https://doi.org/10.1002/jlb.61.2.161
  128. Park, S. H., Lee, H., Park, K. K., Kim, H. W., Lee, D. H. and Park, T. (2006) Taurine-induced changes in transcription profiling of metabolism- related genes in human hepatoma cells HepG2. Adv. Exp. Med. Biol. 583, 119-128
  129. Pearl, P. L., Schreiber, J., Theodore, W. H., McCarter, R., Barrios, E. S., Yu, J., Wiggs, E., Jianping, H. and Gibson, K. M. (2014) Taurine trial in succinic semialdehyde dehydrogenase deficiency and elevated CNS GABA. Neurology 82, 940-944. https://doi.org/10.1212/WNL.0000000000000210
  130. Petty, M. A., Kintz, J. and DiFrancesco, G. F. (1990) The effects of taurine on atherosclerosis development in cholesterol-fed rabbits. Eur. J. Pharmacol. 180, 119-127. https://doi.org/10.1016/0014-2999(90)90599-2
  131. Prentice, H., Modi, J. P. and Wu, J. Y. (2015) Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxid. Med. Cell. Longev. 2015, 964518
  132. Ra, S. G., Choi, Y., Akazawa, N., Ohmori, H. and Maeda, S. (2016) Taurine supplementation attenuates delayed increase in exerciseinduced arterial stiffness. Appl. Physiol. Nutr. Metab. 41, 618-623. https://doi.org/10.1139/apnm-2015-0560
  133. Ra, S-G., Miyazaki, T., Ishikura, K., Nagayama, H., Komine, S., Nakata, Y., Maeda, S., Matsuzaki, Y.,and Ohmori, H. (2013) Combined effect of branched-chain amino acids and taurine supplementation on delayed onset muscle soreness and muscle damage in highintensity eccentric exercise. J. Int. Soc. Sports Nutr. 10, 51. https://doi.org/10.1186/1550-2783-10-51
  134. Ramila, K. C., Jong, C. J., Pastukh, V., Ito, T., Azuma, J., Schaffer, S. W. (2015) Role of protein phosphorylation in excitation-contraction coupling in taurine deficient hearts. Am. J. Physiol. 308, H232- H239.
  135. Rasola, A. and Bernardi, P. (2011) Mitochondrial permeability transition in $Ca^{2+}$-dependent apoptosis and necrosis. Cell Calcium 50, 222-233. https://doi.org/10.1016/j.ceca.2011.04.007
  136. Read, W. O. and Welty, J. D. (1963) Effect of taurine on epinephrine and digoxin induced irregularities of the dog heart. J. Pharmacol. Exp. Ther. 139, 283-289.
  137. Ricci, C., Pastukh, V., Leonard, J., Turrens, J., Wilson, G., Schaffer, D. and Schaffer, S. W. (2008) Mitochondrial DNA damage triggers mitochondrial superoxide generation and apoptosis. Am. J. Physiol. 294, C413-C422. https://doi.org/10.1152/ajpcell.00362.2007
  138. Ricci, L., Valoti, M., Sgaragli, G. and Frosini, M. (2009) Protection by taurine of rat brain cortical slices against oxygen glucose deprivation- and reoxygenation-induced damage. Eur. J. Pharmacol. 621, 26-32. https://doi.org/10.1016/j.ejphar.2009.08.017
  139. Ricciardi, L., De Nigris, F., Specchia, A. and Fasano, A. (2015) Homotaurine in Parkinson's disease. Neurosci. Res. 36, 1581-1587.
  140. Rikimaru, M., Ohsawa, Y., Wolf, A. M., Ichimiya, H., Kamimura, N., Nishimatsu, S., Ohta, S. and Sunada, Y. (2012) Taurine ameliorates impaired mitochondrial function and prevents stroke-like episodes in patients with MELAS. Intern. Med. 51, 3351-3357. https://doi.org/10.2169/internalmedicine.51.7529
  141. Ripps, H. and Shen, W. (2012) Review: taurine: a "very essential" amino acid. Mol. Vis. 18, 2673-2686.
  142. Rosa, F. T., Freitas, E. C., Deminice, R., Jordao, A. A. and Marchini, J. S. (2014) Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind placebo-controlled study. Eur. J. Nutr. 53, 823-830. https://doi.org/10.1007/s00394-013-0586-7
  143. Rumpl, E., Gerstenbrand, F., Hengl, W. and Binder, H. (1977) Electrophysiogical and neuropharmacological studies in a patient with progressive myoclonus-epilepsy. Elektromyograph. Verwandte. Geb. 8, 77-81.
  144. Sagara, M., Murakami, S., Mizushima, S., Liu, L., Mori, M., Ikeda, K., Nara, Y. and Yamori, Y. (2015) Taurine in 24-h urine samples is inversely related to cardiovascular risks of middle aged subjects in 50 populations of the world. Adv. Exp. Med. Biol. 803, 623-636.
  145. Sahin, M. A., Yucel, O., Guler, A., Doganci, S., Jaholliari, A., Cinqoz, F., Arslan, S., Gamsizkan, M., Yaman, H. and Demirkilic, U. (2011) Is there any cardioprotective role for taurine during cold ischemic period following global myocardial ischemia? J. Cardiothorac. Surg. 6, 31. https://doi.org/10.1186/1749-8090-6-31
  146. Santos, J. M., Mishra, M. and Kowluru, R. A. (2014) Posttranslational modification of mitochondrial transcription factor A in impaired mitochondria biogenesis. Implications in diabetic retinopathy and metabolic memory phenomenon. Exp. Eye Res. 121, 168-177. https://doi.org/10.1016/j.exer.2014.02.010
  147. Saransaari, P. and Oja, S. S. (2010) Modulation of taurine release by glutamate receptors and nitric oxide. Prog. Neurobiol. 62, 407-425.
  148. Saronwala, A., Tournay, A., and Garguss, J. J. (2008) Taurine treatment of succinate semialdehyde dehydrogenase (SSADH) deficiency reverses MRI-documented globus lesions and clinical syndrome. In Proc. Am. Coll. Med. Genet., 15th Ann. Clinical Genet. Meeting, March 12-16 2008. Phoenix, AZ, USA.
  149. Sato, Y., Ogata, E. and Fujita, T. (1991) Hypotensive action of taurine in DOCA-salt rats--involvement of sympathoadrenal inhibition and endogenous opiate. Jpn. Circ. J. 55, 500-508. https://doi.org/10.1253/jcj.55.500
  150. Schaffer, S. W., Azuma, J. and Mozaffari, M. (2009) Role of antioxidant activity of taurine in diabetes. Can. J. Physiol. Pharmacol. 87, 91- 99. https://doi.org/10.1139/Y08-110
  151. Schaffer, S. W., Ballard-Croft, C., Azuma, J., Takahashi, K., Kakhniashvili, D. G. and Jenkins, T. E. (1998) Shape and size changes induced by taurine depletion in neonatal cardiomyocytes. Amino Acids 15, 135-142. https://doi.org/10.1007/BF01345286
  152. Schaffer, S. W., Jong, C. J., Ito, T. and Azuma, J. (2014a) Role of taurine in the pathogenesis of MELAS and MERRF. Amino Acids 46, 47-56. https://doi.org/10.1007/s00726-012-1414-8
  153. Schaffer, S. W., Jong, C. J., Ito, T. and Azuma, J. (2014b) Effect of taurine on ischemia-reperfusion injury. Amino Acids 46, 21-30. https://doi.org/10.1007/s00726-012-1378-8
  154. Schaffer, S. W., Jong, C. J., Warner, D., Ito, T. and Azuma, J. (2013) Taurine deficiency and MELAS are closely related syndromes. Adv. Exp. Med. Biol. 776, 153-165
  155. Schaffer, S. W., Shimada-Takaura, K., Jong, C. J., Ito, T. and Takahashi, K. (2016) Impaired energy metabolism of the taurine-deficient heart. Amino Acids 48, 549-558. https://doi.org/10.1007/s00726-015-2110-2
  156. Schaffer, S. W., Solodushko, V. and Kakhniashvili, D. (2002) Beneficial effect of taurine depletion on osmotic sodium and calcium loading during chemical hypoxia. Am. J. Physiol. 282, C1113-C1120. https://doi.org/10.1152/ajpcell.00485.2001
  157. Schmidt, S. Y., Berson, E. L. and Hayes, K. C. (1976) Retinal degeneration in cats fed casein. I. Taurine deficiency. Invest. Ophthalmol. 15, 47-52.
  158. Scicchitano, B. M. and Sica, G. (2016) The beneficial effects of taurine to counteract sarcopenia. Curr. Protein Pept. Sci. [Epub ahead of print].
  159. Sergeeva, O. A., Fleischer, W., Chepkova, A. N., Warskulat, U. and Haussinger, D. (2007) $GABA_A$ receptor modification in taurine transporter knockout mice causes striatal disinhibition. J. Physiol. 585, 539-548. https://doi.org/10.1113/jphysiol.2007.141432
  160. Shetewy, A., Shimada-Takaura, K., Warner, D., Jong, C. J., Mehdi, A. B., Alexeyev, M., Takahashi, K. and Schaffer, S. W. (2016) Mitochondrial defects associated with B-alanine toxicity: relevance to hyper-beta-alaninemia. Mol. Cell Biochem. 416, 11-22. https://doi.org/10.1007/s11010-016-2688-z
  161. Sivitz, W. I. and Yorek, M. A. (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunitiees. Antioxid. Redox Signal. 12, 537-577. https://doi.org/10.1089/ars.2009.2531
  162. Sugiura, H., Okita, S., Kato, T., Naka, T., Kawanishi, Sl., Ohnishi, S. l., Oshida, Y. and Ma, N. (2013) Protection by taurnine against iNOSdependent DNA damage in heavily exercised skeletal muscle by inhibition of the NF-kappaB signalling pathway. Adv. Exp. Med. Biol. 775, 237-246.
  163. Sun, Q., Wang, B., Li, Y., Sun, F., Li, P., Xia, W., Zhou, X., Li, Q., Wang, X., Chen, J., Zeng, X., Zhao, Z., He, H., Liu, D. and Zhu, Z. (2016) Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: randomized, double-blind, placebo controlled study. Hypertension 67, 541-549. https://doi.org/10.1161/HYPERTENSIONAHA.115.06624
  164. Tan, B., Jiang, D. J., Huang H., Jia, S. J., Hu, C. P. and Li, Y. J. (2007) Taurine protects against low-density lipoprotein-induced endothelial dysfunction by the DDAH/ADMA pathway. Vascul. Pharmacol. 46, 338-345. https://doi.org/10.1016/j.vph.2006.11.006
  165. Terashima, M., Mitani, T., Hosokawa, Y., Nariai, Y., Imada, K., Kageyama, E. and Tanigawa, Y. (2003) Suppressive effect of taurine on platelet-derived growth factor (PDGF) BB-induced c-fos and c-jun mRNA expressions through extracellular signal-regulated kinase (ERK) in mesenchymal cell lines. J. Nutr. Sci. Vitaminol. (Tokyo) 49, 187-194. https://doi.org/10.3177/jnsv.49.187
  166. Terrill, J. R., Grounds, M. D. and Arthur, P. G. (2015) Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy. Int. J. Biochem. Cell Biol. 66, 141-148. https://doi.org/10.1016/j.biocel.2015.07.016
  167. Terrill, J. R., Grounds, M. D. and Arthur, P. G. (2016a) Increased taurine in pre-weaned juvenile mdx mice greatly reduces the acute onset of myofibre necrosis and dystropathology and prevents inflammation. PLoS Curr. 8, ecurrents.md.77,
  168. Terrill, J. R., Pinniger, G. J., Graves, J. A., Grounds, M. D. and Arthur, P. G. (2016b) Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse for Duchenne muscular dystrophy. J. Physiol. 594, 2095-2110. https://doi.org/10.1113/JP271168
  169. Trachtman, H., Futterweit, S., Maesaka, J., Ma, C., Valderrama, E., Fuchs, A., Tarectetecan, A., Rao, P. S., Sturman, J. A. and Boles, T. H. et al. (1995) Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats. Am. J. Physiol. 269, F429-F438.
  170. Ulrich-Merzenich, G., Zeitler, H., Vetter, H. and Bhonde, R. R. (2007) Protective effects of taurine on endothelial cells impaired by high glucose and oxidized low density lipoproteins. Eur. J. Nutr. 46, 431-438. https://doi.org/10.1007/s00394-007-0682-7
  171. Venturini, A., Ascione, R., Lin, H., Polesel, E., Angelini, G. D. and Suleiman, M. S. (2009) The importance of myocardial amino acids during ischemia and reperfusion in dilated left ventricle of patients with degenerative mitral valve disease. Mol. Cell Biochem. 330, 63-70. https://doi.org/10.1007/s11010-009-0101-x
  172. Warskulat, U., Flogel, U., Jacoby, C., Hartwig, H. G., Thewissen, M., Merx, M. W., Molojavyl, A., Heller-Stilb, B., Schrader, J. and Haussinger, D. (2004) Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J. 18, 577-579. https://doi.org/10.1096/fj.03-0496fje
  173. Winiarska, K., Szmanski, K., Gorniak, P., Dudziak, M. and Bryla, J. (2009) Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie 91, 261-270. https://doi.org/10.1016/j.biochi.2008.09.006
  174. Wu, F., Koenig, K. L., Zeleniuch-Jacquotte, A., Jonas, S., Afanasiyeva, Y., Wojcik, O. P., Costa, M. and Chen, Y. (2016) Serum taurine and stroke risk in women: A prospective, nested case-control study. PLoS ONE 11, e0149348. https://doi.org/10.1371/journal.pone.0149348
  175. Wu, H., Jin, Y., Wei, J., Jin, H., Sha, D. and Wu, J. Y. (2005) Mode of action of taurine as a neuroprotector. Brain Res. 1038, 123-131. https://doi.org/10.1016/j.brainres.2005.01.058
  176. Wu, J., Kohno, T., Georgiev, S. K., Ikoma, M., Ishii, H., Petrenko, A. B. and Baba, H. (2008) Taurine activates glycine and gamma-aminobutyric acid A receptors in rat substantia gelatinosa neurons. Neuroreport 19, 333-337. https://doi.org/10.1097/WNR.0b013e3282f50c90
  177. Wu, J. Y. and Prentice, H. (2010) Role of taurine in the central nervous system. J Biomed. Sci. 17, S1. https://doi.org/10.1186/1423-0127-17-S1-S1
  178. Yamori, Y., Liu, L., Ikeda, K., Miura, A., Mizushima, S., Miki, T. and Nara, Y. (2001) Distribution of twenty-four hour urinary taurine excretion and association with ischemic heart disease mortality in 24 populations of 16 countries: results from the WHO-CARDIAC study. Hypertens. Res. 24, 453-457. https://doi.org/10.1291/hypres.24.453
  179. Yamori, Y., Liu, L., Mori, M., Sagara, M., Murakami, S., Nara, Y. and Mizushima, S. (2009) Taurine as the nutritional factor for the longevity of the Japanese revealed by a world-wide epidemiological survey. Adv. Exp. Med. Biol. 643, 13-25.
  180. Yamori, Y., Murakami, S., Ikeda, K. and Nara, Y. (2004) Fish and lifestyle- related disease prevention: experimental and epidemiological evidence for anti-atherogenic potential of taurine. Clin. Expt. Pharmacol. Physiol. 31, S20-S23. https://doi.org/10.1111/j.1440-1681.2004.04122.x
  181. Yamori, Y., Taguchi, T., Hamada, A., Kunimasa, K., Mori, H. and Mori, M. (2010) Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J. Biomed. Sci. 17, S6. https://doi.org/10.1186/1423-0127-17-S1-S6
  182. Yanagita, T., Han, S. Y., Hu, Y., Nagao, K., Kitajima, H. and Murakami, S. (2008) Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells. Lipids Health Dis. 7, 38. https://doi.org/10.1186/1476-511X-7-38
  183. Yatabe, Y., Miyakawa, S., Miyazaki, T., Matsuzaki, Y. and Ochiai, N. (2003) Effects of taurine administration in rat skeletal muscles on exercise. J. Orthop. Sci. 8, 415-419. https://doi.org/10.1007/s10776-002-0636-1
  184. Yokogoshi, H., Mochizuki, H., Nanami, K., Hida, Y., Miyachi, F. and Oda, H. (1999) Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. J. Nutr. 129, 1705-1712. https://doi.org/10.1093/jn/129.9.1705
  185. Yoshimura, H., Nariai, Y., Etshima, M., Mitani, T. and Tanigawa, Y. (2005) Taurine suppresses platelet-derived growth factor (PDGF) BB-induced PDGF-beta receptor phosphorylation by protein tyrosine phosphatase-mediated dephosphorylation in vascular smooth muscle cells. Biochim. Biophys. Acta. 1745, 350-360. https://doi.org/10.1016/j.bbamcr.2005.07.005
  186. Zhang, L., Yuan, Y., Tong, Q., Jiang, S., Xu, Q., Ding, J., Zhang, L., Zhang, R. and Zhang, K. (2016) Reduced plasma taurine level in Parkinson's disease: association with motor severity and levodopa treatment. Int. J. Neurosci. 126, 630-636.
  187. Zheng, Y., Ceglarek, U., Huang, T., Wang, T., Heianza, Y., Ma, W., Bray, G. A., Thiery, J., Sacks, F. M. and Qi, L. (2016) Plasma taurine, diabetes genetic predisposition, and changes of insulin sensitivity in response to weight-loss diets. J. Clin. Endocrinol. Metabol. 101, 3820-3826. https://doi.org/10.1210/jc.2016-1760
  188. Zulli, A., Lau, E., Wijaya, B. P. P., Jin, X., Sutarga, K., Schwartz, G. D., Leamont, J., Wookey, P. J., Zinellu, A., Carru, C. and Hare, D. L. (2009) High dietary taurine reduces apoptosis and atherosclerosis in the left main coronary artery. Hypertension 53, 1017-1022. https://doi.org/10.1161/HYPERTENSIONAHA.109.129924

Cited by

  1. Beneficial Effects of N-Acetyl-L-cysteine or Taurine Pre- or Post-treatments in the Heart, Spleen, Lung, and Testis of Hexavalent Chromium-Exposed Mice pp.1559-0720, 2018, https://doi.org/10.1007/s12011-018-1571-z
  2. Studies on the interaction of aquacobalamin with cysteinesulfinic and cysteic acids, hypotaurine and taurine pp.1029-0389, 2018, https://doi.org/10.1080/00958972.2018.1515927
  3. Cell culture medium supplemented with taurine decreases basic charge variant levels of a monoclonal antibody pp.1573-6776, 2018, https://doi.org/10.1007/s10529-018-2606-4
  4. Regulators of the transsulfuration pathway pp.00071188, 2018, https://doi.org/10.1111/bph.14446
  5. Taurine Supplementation Alleviates Puromycin Aminonucleoside Damage by Modulating Endoplasmic Reticulum Stress and Mitochondrial-Related Apoptosis in Rat Kidney vol.10, pp.6, 2018, https://doi.org/10.3390/nu10060689
  6. The Effect of the MNRI Method on Neurotransmitter Biomarkers of Individuals with Neurodevelopmental Disorders vol.10, pp.3, 2019, https://doi.org/10.4236/nm.2019.103022
  7. Insights on Nutrients as Analgesics in Chronic Pain vol.26, pp.None, 2019, https://doi.org/10.2174/0929867326666190712172015
  8. Taurine reduces hyperactive behavior in SHR rats through upregulating the proportion of CD4+CD25+Foxp3+ regulatory T cells vol.56, pp.None, 2018, https://doi.org/10.1016/j.jff.2019.03.032
  9. Urinary Taurine Excretion and Risk of Late Graft Failure in Renal Transplant Recipients vol.11, pp.9, 2018, https://doi.org/10.3390/nu11092212
  10. Neuroprotective effects of taurine and 3-hydroxypyridine derivatives in the intracerebral hemorrhage model in rats vol.5, pp.3, 2018, https://doi.org/10.3897/rrpharmacology.5.36988
  11. Natural Sulfur-Containing Compounds: An Alternative Therapeutic Strategy against Liver Fibrosis vol.8, pp.11, 2018, https://doi.org/10.3390/cells8111356
  12. Evaluation of taurine content on skeletal muscle of exercised rats using MALDI-TOF MS imaging analysis vol.9, pp.4, 2018, https://doi.org/10.7600/jpfsm.9.165
  13. Taurine and cardiac disease: state of the art and perspectives vol.98, pp.2, 2018, https://doi.org/10.1139/cjpp-2019-0313
  14. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health vol.52, pp.3, 2020, https://doi.org/10.1007/s00726-020-02823-6
  15. Perspectives and safety of horsemeat consumption vol.55, pp.3, 2018, https://doi.org/10.1111/ijfs.14390
  16. Changes in plasma amino acids metabolites, caused by long-term IGF-I deficiency, are reversed by IGF-I treatment – A pilot study vol.52, pp.None, 2018, https://doi.org/10.1016/j.ghir.2020.02.001
  17. Expedition into Taurine Biology: Structural Insights and Therapeutic Perspective of Taurine in Neurodegenerative Diseases vol.10, pp.6, 2018, https://doi.org/10.3390/biom10060863
  18. Taurine Stimulates Thermoregulatory Genes in Brown Fat Tissue and Muscle without an Influence on Inguinal White Fat Tissue in a High-Fat Diet-Induced Obese Mouse Model vol.9, pp.6, 2020, https://doi.org/10.3390/foods9060688
  19. Long-term effects of a maternal high-fat: high-fructose diet on offspring growth and metabolism and impact of maternal taurine supplementation vol.11, pp.4, 2018, https://doi.org/10.1017/s2040174419000709
  20. Comparative Blood and Urine Metabolomics Analysis of Healthy Elderly and Young Male Singaporeans vol.19, pp.8, 2018, https://doi.org/10.1021/acs.jproteome.0c00215
  21. Taurine attenuates gossypol-induced apoptosis of C2C12 mouse myoblasts via the GPR87-AMPK/AKT signaling vol.52, pp.9, 2020, https://doi.org/10.1007/s00726-020-02888-3
  22. A Comprehensive Insight into Potential Roles of Taurine on Metabolic Variables in Type 2 Diabetes: A Systematic Review vol.26, pp.3, 2018, https://doi.org/10.34172/ps.2020.17
  23. Taurine suppresses ROS-dependent autophagy via activating Akt/mTOR signaling pathway in calcium oxalate crystals-induced renal tubular epithelial cell injury vol.12, pp.17, 2018, https://doi.org/10.18632/aging.103730
  24. Capsaicin and Gut Microbiota in Health and Disease vol.25, pp.23, 2018, https://doi.org/10.3390/molecules25235681
  25. Dietary Thiols: A Potential Supporting Strategy against Oxidative Stress in Heart Failure and Muscular Damage during Sports Activity vol.17, pp.24, 2020, https://doi.org/10.3390/ijerph17249424
  26. New solutions for old challenges in glaucoma treatment: is taurine an option to consider? vol.16, pp.5, 2018, https://doi.org/10.4103/1673-5374.297059
  27. Estrogen Regulates Local Cysteine Metabolism in Mouse Myometrium vol.28, pp.1, 2018, https://doi.org/10.1007/s43032-020-00284-6
  28. Effect of dietary inclusion of taurine on performance, carcass characteristics and muscle micro-measurements in broilers under cyclic heat stress vol.20, pp.1, 2021, https://doi.org/10.1080/1828051x.2021.1921627
  29. The Dose Response of Taurine on Aerobic and Strength Exercises: A Systematic Review vol.12, pp.None, 2021, https://doi.org/10.3389/fphys.2021.700352
  30. Hydrogen Sulfide Ameliorates Angiotensin II-Induced Atrial Fibrosis Progression to Atrial Fibrillation Through Inhibition of the Warburg Effect and Endoplasmic Reticulum Stress vol.12, pp.None, 2018, https://doi.org/10.3389/fphar.2021.690371
  31. In Vitro Genotoxicity Assessment of Functional Ingredients: Betaine, Choline, and Taurine vol.10, pp.2, 2021, https://doi.org/10.3390/foods10020339
  32. Taurine represses age‐associated gut hyperplasia in Drosophila via counteracting endoplasmic reticulum stress vol.20, pp.3, 2018, https://doi.org/10.1111/acel.13319
  33. The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease vol.10, pp.5, 2018, https://doi.org/10.3390/jcm10051081
  34. Effects of dietary supplementation with taurine on production performance of Angora rabbits vol.29, pp.1, 2018, https://doi.org/10.4995/wrs.2021.13133
  35. Alteration of inflammation cytokines in lipopolysaccharide - activated lymphocyte by crude extract of taurine from sea slug Paraonchidium via down-regulation of NF-kB pathway vol.744, pp.1, 2021, https://doi.org/10.1088/1755-1315/744/1/012021
  36. Taurine and oxidative stress in retinal health and disease vol.27, pp.4, 2018, https://doi.org/10.1111/cns.13610
  37. The Impact of H2S on Obesity-Associated Metabolic Disturbances vol.10, pp.5, 2018, https://doi.org/10.3390/antiox10050633
  38. Disparate Metabolomic Responses to Fructose Consumption between Different Mouse Strains and the Role of Gut Microbiota vol.11, pp.6, 2021, https://doi.org/10.3390/metabo11060342
  39. Protective effect of taurine on sepsis‑induced lung injury via inhibiting the p38/MAPK signaling pathway vol.24, pp.3, 2021, https://doi.org/10.3892/mmr.2021.12292
  40. Influence of innate immune activation on endocrine and metabolic pathways in infancy vol.321, pp.1, 2018, https://doi.org/10.1152/ajpendo.00542.2020
  41. Metagenomic analysis revealed the individualized shift in ileal microbiome of neonatal calves in response to delaying the first colostrum feeding vol.104, pp.8, 2018, https://doi.org/10.3168/jds.2020-20068
  42. Taurine reduction associated with heart dysfunction after real-world PM2.5 exposure in aged mice vol.782, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.146866
  43. L-Methionine Protects against Oxidative Stress and Mitochondrial Dysfunction in an In Vitro Model of Parkinson’s Disease vol.10, pp.9, 2021, https://doi.org/10.3390/antiox10091467
  44. Prevention of colistin induced nephrotoxicity: a review of preclinical and clinical data vol.14, pp.9, 2018, https://doi.org/10.1080/17512433.2021.1933436
  45. Ash Influence on the Ethyl Levulinate Production from Sugarcane Molasses Mediated by Taurine Hydrogen Sulfate vol.9, pp.40, 2018, https://doi.org/10.1021/acssuschemeng.1c03564
  46. Taurine and Camel Milk Modulate Neurobehavioral and Biochemical Changes in Aluminum Chloride-Induced Alzheimer’s Disease in Rats vol.84, pp.1, 2021, https://doi.org/10.3233/jad-210130
  47. Taurine protects blood-milk barrier integrity via limiting inflammatory response in Streptococcus uberis infections vol.101, pp.no.pb, 2018, https://doi.org/10.1016/j.intimp.2021.108371
  48. Impact of spaceflight and artificial gravity on sulfur metabolism in mouse liver: sulfur metabolomic and transcriptomic analysis vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-01129-1
  49. Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella spallanzanii and Microcosmus squamiger vol.11, pp.12, 2018, https://doi.org/10.3390/ani11123557
  50. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models vol.10, pp.12, 2018, https://doi.org/10.3390/antiox10121876
  51. Blueberry Counteracts Prediabetes in a Hypercaloric Diet-Induced Rat Model and Rescues Hepatic Mitochondrial Bioenergetics vol.13, pp.12, 2018, https://doi.org/10.3390/nu13124192
  52. Metabolomic profiling of plasma from middle-aged and advanced-age male mice reveals the metabolic abnormalities of carnitine biosynthesis in metallothionein gene knockout mice vol.13, pp.23, 2018, https://doi.org/10.18632/aging.203731
  53. Taurine prevents MK-801-induced shoal dispersion and altered cortisol responses in zebrafish vol.111, pp.None, 2021, https://doi.org/10.1016/j.pnpbp.2021.110399
  54. Glial Cell Activation and Oxidative Stress in Retinal Degeneration Induced by β-Alanine Caused Taurine Depletion and Light Exposure vol.23, pp.1, 2022, https://doi.org/10.3390/ijms23010346