• Title/Summary/Keyword: Mitochondria-dependent pathway

Search Result 110, Processing Time 0.023 seconds

Silibinin Induces Apoptotic Cell Death Via ROS-dependent Mitochondrial Pathway in Human Glioma Cells

  • Shin, Won-Yong;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.888-894
    • /
    • 2009
  • It has been reported that silibinin, a natural polyphenolic flavonoid, induces cell death in various cancer cell types. However, the underlying mechanisms by which silibinin induces apoptosis in human glioma cells are poorly understood. The present study was therefore undertaken to examine the effect of silibinin on glioma cell apoptosis and to determine its underlying mechanism in human glioma cells. Apoptosis was estimated by FACS analysis. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (${\Psi}m$) were measured using fluorescence dyes DCFH-DA and $DiOC_6$(3), respectively. Cytochrome c release from mitochondria and caspase-3 activation were estimated by Western blot analysis using specific antibodies. Exposure of cells to 30 mM silibinin induced apoptosis starting at 6 h, with increasing effects after 12-48h in a time-dependent manner. Silibinin caused ROS generation and disruption of ym, which were associated with the silibinin-induced apoptosis. The silibinin-induced ROS generation and disruption in ym were prevented by inhibitors of mitochondrial electron transport chain. The hydrogen peroxide scavenger catalase blocked ROS generation and apoptosis induced by silibinin. Silibinin induced cytochrome c release into cytosolic fraction and its effect was prevented by catalase and cyclosporine A. Silibinin treatment caused caspase-3 activation, which was inhibited by DVED-CHO and cyclosporine A. Pretreatment of caspase inhibitors also protected against the silibinin-induced apoptosis. These findings indicate that ROS generation plays a critical role in the initiation of the silibinin-induced apoptotic cascade by mediation of the mitochondrial apoptotic pathway including the disruption of ${\Psi}m$, cytochrome c release, and caspase-3 activation.

Inhibition of cell growth and induction of apoptosis by acacetin in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Park, Jong-Hyun;Lim, Jin Woong;Yu, Sun-Kyoung;Kim, Heung-Joong;Shin, Sang Hun;Park, Bo-Ram;Kim, Chun Sung;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2020
  • Acacetin, which is present in damiana (Turnera diffusa) and black locust (Robinia pseudoacacia), has several pharmacologic activities such as antioxidant, anti-inflammatory, and anti-proliferative effects on cancer cells. However, the effect of acacetin on head and neck cancers has not been clearly established. This study aimed to examine the effects of acacetin on cell growth and apoptosis induction in FaDu human pharyngeal carcinoma cells. These were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, Live/Dead cell assay, 4',6-diamidino-2-phenylindole dihydrochloride staining, caspase-3 and caspase-7 activation assay, and immunoblotting in FaDu cells. Acacetin induced FaDu cell death in a dose-dependent manner, with an estimated IC50 value of 41.9 µM, without affecting the viability of L-929 mouse fibroblasts as normal cells. Acacetin treatment resulted in nuclear condensation in the FaDu cells. It promoted the proteolytic cleavage of procaspase-3, -7, -8, and -9 with increasing amounts of the cleaved caspase isoforms in FaDu cells. Acacetin-induced apoptosis in FaDu cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting showed downregulation of the anti-apoptotic mitochondrial proteins Bcl-2 and Bcl-xL, but upregulation of the mitochondria-dependent pro-apoptotic proteins Bax and Badin FaDu cells after acacetin treatment. These findings indicate that acacetin inhibits cell proliferation and induces apoptotic cell death in FaDu human pharyngeal carcinoma cells via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondria-mediated intrinsic apoptotic pathway.

Enterocarpam-III Induces Human Liver and Breast Cancer Cell Apoptosis via Mitochondrial and Caspase-9 Activation

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1833-1837
    • /
    • 2015
  • An aristolactam-type alkaloid, isolated from Orophea enterocarpa, is enterocarpam-III (10-amino-2,3,4,6-tetramethoxyphenanthrene-1-carboxylic acid lactam). It is cytotoxic to various human and murine cancer cell lines; however, the molecular mechanisms remain unclear. The aims of this study were to investigate cytotoxic effects on and mechanism (s) of human cancer cell death in human hepatocellular carcinoma HepG2 and human invasive breast cancer MDA-MB-231 cells compared to normal murine fibroblast NIH3T3 cells. Cell viability was determined by MTT assay to determine $IC_{10}$, $IC_{20}$ and $IC_{50}$ levels, reactive oxygen species (ROS) production with 2',7'-dichlorohydrofluorescein diacetate and the caspase-3, -8 and -9 activities using specific chromogenic (p-nitroaniline) tetrapeptide substrates, viz., DEVD-NA, IETD-NA and LEHD-NA and employing a microplate reader. Mitochondrial transmembrane potential (MTP) was measured by staining with 3, 3'-dihexyloxacarbocyanine iodide ($DiOC_6$) and using flow cytometry. The compound was cytotoxic to HepG2 and MDA-MB-231 cells with the $IC_{50}$ levels of $26.0{\pm}4.45$ and $51.3{\pm}2.05{\mu}M$, respectively. For murine normal fibroblast NIH3T3 cells, the $IC_{50}$ concentration was $81.3{\pm}10.1{\mu}M$. ROS production was reduced in a dose-response manner in HepG2 cells. The caspase-9 and -3 activities increased in a concentration-dependent manner, whereas caspase-8 activity did not alter, indicating the intrinsic pathway activation. Enterocarpam-III decreased the mitochondrial transmembrane potential (MTP) dose-dependently in HepG2 cells, suggesting that the compound induced HepG2 cell apoptosis via the mitochondrial pathway. In conclusion, enterocarpam-III inhibited HepG2 and MDA-MB-231 cell proliferation and induced human HepG2 cells to undergo apoptosis via the intrinsic (mitochondrial) pathway and induction of caspase-9 activity.

Induction of Human Hepatocellular Carcinoma HepG2 Cell Apoptosis by Naringin

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Khaw-on, Patompong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3289-3294
    • /
    • 2016
  • Naringin, a bioflavonoid found in Citrus seeds, inhibits proliferation of cancer cells. The objectives of this study were to investigate the mode and mechanism(s) of hepatocellular carcinoma HepG2 cell death induced by naringin. The cytotoxicity of naringin towards HepG2 cells proved dose-dependent, measured by MTT assay. Naringin-treated HepG2 cells underwent apoptosis also in a concentration related manner, determined by annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) employing flow cytometry. Mitochondrial transmembrane potential (MTP) measured using 3,3'-dihexyloxacarbocyanine iodide ($DiOC_6$) and flow cytometer was reduced concentration-dependently, which indicated influence on the mitochondrial signaling pathway. Caspase-3, -8 and -9 activities were enhanced as evidenced by colorimetric detection of para-nitroaniline tagged with a substrate for each caspase. Thus, the extrinsic and intrinsic pathways were linked in human naringin-treated HepG2 cell apoptosis. The expression levels of pro-apoptotic Bax and Bak proteins were increased whereas that of the anti-apoptotic Bcl-xL protein was decreased, confirming the involvement of the mitochondrial pathway by immunoblotting. There was an increased expression of truncated Bid (tBid), which indicated caspase-8 proteolysis activity in Bid cleavage as its substrate in the extrinsic pathway. In conclusion, naringin induces human hepatocellular carcinoma HepG2 cell apoptosis via mitochondria-mediated activation of caspase-9 and caspase-8-mediated proteolysis of Bid. Naringin anticancer activity warrants further investigation for application in medical treatment.

Oleanolic acid 3-acetate, a minor element of ginsenosides, induces apoptotic cell death in ovarian carcinoma and endometrial carcinoma cells via the involvement of a reactive oxygen species-independent mitochondrial pathway

  • Jo, Hantae;Oh, Jeong-Hyun;Park, Dong-Wook;Lee, Changho;Min, Churl K.
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.96-104
    • /
    • 2020
  • Objectives: Oleanolic acid, a minor element of ginsenosides, and its derivatives have been shown to have cytotoxicity against some tumor cells. The impact of cytotoxic effect of oleanolic acid 3-acetate on ovarian cancer SKOV3 cells and endometrial cancer HEC-1A cells were examined both in vivo and in vitro to explore the underlying mechanisms. Methods: Cytotoxic effects of oleanolic acid 3-acetate were assessed by cell viability, phosphatidylserine exposure on the cell surface, mitochondrial release of cytochrome C, nuclear translocation of apoptosis-inducing factor, depolarization of mitochondrial transmembrane potential (∆Ψm), and generation of reactive oxygen species (ROS). In vivo inhibition of tumor growth was also assessed with xenografts in immunocompromised mice. Results: Oleanolic acid 3-acetate exhibited potent cytotoxicity toward SKOV3 and HEC-1A cells by decreasing cell viability in a concentration-dependent manner. Importantly, oleanolic acid 3-acetate effectively suppressed the growth of SKOV3 cell tumor xenografts in immunocompromised mice. Furthermore, oleanolic acid 3-acetate induced apoptotic cell death as revealed by loss of ∆Ψm, release of cytochrome c, and nuclear translocation of apoptosis-inducing factor with a concomitant activation of many proapoptotic cellular components including poly(ADP-ribose) polymerase, Bcl-2, and caspases-8, caspase-3, and caspase-7. Oleanolic acid 3-acetate, however, caused a decrease in ROS production, suggesting the involvement of an ROS-independent pathway in oleanolic acid 3-acetate-induced apoptosis in SKOV3 and HEC-1A cells. Conclusion: These findings support the notion that oleanolic acid 3-acetate could be used as a potent anticancer supplementary agent against ovarian and endometrial cancer. Oleanolic acid 3-acetate exerts its proapoptotic effects through a rather unique molecular mechanism that involves an unconventional ROS-independent but mitochondria-mediated pathway.

Tamoxifen Induces Mitochondrial-dependent Apoptosis via Intracellular Ca2+ Modulation (탐옥시펜에 의해 유도된 세포 내 칼슘농도 변화와 미토콘드리아 의존적 세포사멸)

  • Jang, Eun-Seong;Kim, Ji-Young;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1053-1062
    • /
    • 2007
  • In the present work, we show that tamoxifen(Tam)-induced cytotoxicity is due to the mitochondrial-dependent pathway triggered by the intracellular $Ca^{2+}$ increase in MCF-7 human breast cancer cells. Tam induced the intracellular $Ca^{2+}$ increase. According to the experimental results with $Ca^{2+}$ channel blockers, Tam-induced $Ca^{2+}$ uptake seemed to depend on the voltage-sensitive $Ca^{2+}$ channel at the early stage, but at later stages the intracellular $Ca^{2+}$ increases are more likely due partly to the release of stored $Ca^{2+}$ and partly to the capacitative $Ca^{2+}$ or other entry pathways. Tam-induced $Ca^{2+}$ increase led to the release of cytochrome c from mitochondria into the cytosol and the change of mitochondrial membrane potential. In MCF-7 cells, caspase-7 plays a key role in the downstream of apoptosis because caspase-3 is absent. In the cells treated with Tam, caspase-7 cleavage was increased almost two-fold. There was no marked alteration in the level of anti-apoptotic Bcl-2 protein; however, the cells showed increased expression of pro-apoptotic Bax protein more than two-fold in response to Tam. These results imply that the apoptotic signaling pathway activated by Tam is likely to be mediated via the mitochondrial-dependent pathway.

Association of a Methanol Extract of Rheum undulatum L. Mediated Cell Death in AGS Cells with an Intrinsic Apoptotic Pathway

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Jung, Myeong Ho;Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.18 no.2
    • /
    • pp.26-32
    • /
    • 2015
  • Objectives: Rheum undulatum L. has traditionally been used for the treatment of many diseases in Asia. However, its anti-proliferative activity in cancer has still not been studied. In the present study, we investigated the anti-cancer effects of methanol extract of Rheum undulatum L. (MERL) on human adenocarcinoma gastric cell lines (AGS). Methods: To investigate the anti-cancer effect of MERL on AGS cells, we treated the AGS cells with varying concentrations of MERL and performed 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Cell cycle analyses, measurements of the mitochondrial membrane potential (MMP), caspase activity assays and Western blots were conducted to determine whether AGS cell death occurred by apoptosis. Results: Treatment with MERL significantly inhibited growth of AGS cells in a concentration dependent manner. MERL treatment in AGS cells leaded to increased accumulation of apoptotic sub G1 phase cells in a concentration dependent manner. In control cultures, 5.38% of the cells were in the sub G1 phase. In MERL treated cells, however, this percentage was significantly increased (9.95% at $70{\mu}g/mL$, 15.94% at $140{\mu}g/mL$, 26.56% at $210{\mu}g/mL$ and 38.08% at $280{\mu}g/mL$). MERL treatment induced the decreased expression of pro-caspase-8 and -9 in a concentration dependent manner, whereas the expression of the active form of caspase-3 was increased. A subsequent Western blot analysis revealed increased cleaved levels of poly (ADP-ribose) polymerase (PARP) protein. Also, treatment with MERL increased the activities of caspase-3 and -9 compared with the control. MERL treatment increased the levels of the pro-apoptotic truncated Bid (tBid) and Bcl2 Antagonist X (Bax) proteins and decreased the levels of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, whose is the stabilization of mitochondria. However, inhibitions of p38, extracellular signal regulated kinases (ERKs) and C-Jun N-terminal kinases (JNK) by MERL treatment did not affect cell death. Conclusion: These results suggest that MERL mediated cell death is associated with an intrinsic apoptotic pathway in AGS cells.

Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway

  • Park, Cheol;Choi, Eun Ok;Hwangbo, Hyun;Lee, Hyesook;Jeong, Jin-Woo;Han, Min Ho;Moon, Sung-Kwon;Yun, Seok Joong;Kim, Wun-Jae;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.16 no.3
    • /
    • pp.330-343
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS: Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS: EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

Effect of Anemarrhenae Rhizoma Ethanol Extract on Apoptosis Induction of HT-29 Human Colon Cancer Cells (지모(知母)에탄올추출물의 HT-29대장암세포 Apoptosis 유도효과)

  • Kim, Tae-Hyun;Kim, Pom-Ho;Jeon, Byoung-Kook;Yoon, Jeong-Rock;Woo, Won-Hong;Mun, Yeun-Ja;Lee, Jang-Cheon;Lee, Boo-Kyun;Park, oung-Gue;Lim, Kyu-Sang
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.24 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • Objective : In this study, we investigated the effects of ethanol extract of Anemarrhenae Rhizoma (EAR) on the proliferation and apoptosis induction of HT-29 human colon cancer cells. Methods : Cell viability of HT-29 cells were measured by MTT assay and apoptisis-related proteins were assessed using western blotting. Chromatin condensation of HT-29 cells stained with Hoechst 33258. Results : In the present study, we demonstrated that EAR exhibited significant cytotoxicity in HT-29 cells. The induction of apoptosis in HT-29 cells by EAR treatment was characterized by chromatin condensation and the activation of caspase-3. EAR-induced apoptosis is accompanied by the release of cytochrome c and the specific proteolytic cleavage of PARP. EAR was appeared cytotoxic effect to HT-29 cells in a dose-dependent manner. Concomitantly, EAR treatment led to increase in the caspase-9. The reduction of Bcl-2 and truncation of Bid were induced by EAR. Conclusion : We studied that the EAR induced apoptosis in human colon adenocarcinoma HT-29 cells. These results indicated that EAR can cause apoptosis through mitochondria/caspase pathway in human HT-29 cells.

Effect of Prunellae Spica on Oxidative Stress and Mitochondrial Dysfunction in the Hepatocyte (하고초(夏枯草)의 간세포에서 항산화 및 미토콘드리아 보호효과)

  • Jang, Mihee;Seo, Hye Lim;Kim, Sang Chan;Kim, Young Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.20-26
    • /
    • 2016
  • Prunellae Spica, the herbaceous plant in the genus Prunella, is a traditional herbal medicine and has been reported to have diuretic, anti-bacterial and anti-oxidant effects. However, the mechanism of its action was not clearly identified. In the present study, we investigated the hepatoprotective effect of Prunellae Spica extract (PSE) against the damage of mitochondria and death in hepatocyte induced by oxidative stress. Treatment of arachidonic acid (AA)+iron significantly induced oxidative stress and apoptosis in the hepatocytes. However, PSE protected cells and inhibited apoptosis by altering the protein levels such as poly(ADP-ribose) polymerase and pro-caspase 3. Moreover, AA+iron induced reactive oxygen species production and mitochondrial dysfunction, and Both of them were inhibited by PSE treatment. PSE markedly activated AMP-activated protein kinase (AMPK), an important regulator in cell survival. Furthermore, this activation by PSE was mediated with liver kinase B1, a major upstream kinase that phosphorylates Thr 172 of AMPKα, and this activation was associated with its cell protection, as assessed by an experiment of a chemical inhibitor. In conclusion, this study demonstrate that PSE protects hepatocytes against oxidative stress as mediated with activation of LKB1-dependent AMPK pathway.