• Title/Summary/Keyword: Mission Reliability

Search Result 222, Processing Time 0.041 seconds

Mission Operation Capability Verification Test for Low Earth Orbit(LEO) Satellite by Utilizing Interface Environment between LEO Satellite and Ground Station (저궤도 위성과 지상국간 접속 환경을 활용한 임무수행능력 지상 검증 시험)

  • Lee, Sang-Rok;Koo, In-Hoi;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • After launch of Low Earth Orbit(LEO) satellite, Initial Activation Checkout(IAC) and Calibration and Validation(Cal & Val) procedure are performed prior to enter normal operation phase. During normal operation phase, most of the time is allocated for mission operation except following up measures to anomaly and orbit maintenance. Since mission operation capability is key indicator for success of LEO satellite program and consistent with promotion purpose of LEO satellite program, reliability should be ensured by conducting through test. In order to ensure reliability by examining the role of LEO satellite and ground station during ground test phase, realistic test scenario that is similar to actual operation conditions should be created, and test that aims to verify full mission cycle should be performed by transmitting created command and receiving image and telemetry data. This paper describes the test design and result. Consideration items for test design are described in detail and result of designed test items are summarized.

Reliability Design Using FMEA for Pressure Control Regulator of Aircraft Fuel System (항공기용 연료계통 압력조절밸브의 FMEA를 적용한 신뢰성 설계)

  • Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • The reliability assessment is performed for Pressure Control Regulator of Aircraft Fuel System using reliability procedure which consists of the reliability analysis and the Failure Modes and Effects Analysis(FMEA). The target reliability as MTBF(Mean Time Between Failure) is set to 5000hr. During the reliability analysis process, the system is categorized by Work Breakdown Structure(WBS) up to level 3, and a reliability structure is defined by schematics of the system. Since the components and parts that have been collected through EPRD/NPRD. The predicted reliability to meet mission requirements and operating conditions is estimated as 4375.9hr. To accomplish the target reliability, the components and parts with high RPN have been identified and changed by analyzing the potential failure modes and effects. By changing the configuration design of components and parts with high-risk, the design is satisfied target reliability.

  • PDF

Reliability approximation for a complex system under the stress-strength model

  • Nayak, Sadananda;Roy, Dilip
    • International Journal of Reliability and Applications
    • /
    • v.13 no.2
    • /
    • pp.71-80
    • /
    • 2012
  • This paper introduces a new approach for evaluating reliability of a complex system in terms of distributional parameters where analytical determination of reliability is intractable. The concept of discrete approximation, reported in the literature so far, fails to meet the latter requirement in terms of distributional parameters. The current work aims at offering a bound based approach where reliability planners not only get a clear idea about the extent of error but also can manipulate in terms of distributional parameters. This reliability approximation has been under taken under the Weibull frame work which is the most widely used model for reliability analysis. Numerical study has been carried out to examine the strength of our proposed reliability approximation via closeness between the two reliability bounds. This approach will be very useful during the early stages of product design as the distributional parameters can be adjusted.

  • PDF

Notes on the Comparative Study of the Reliability Estimation for Standby System with Exponential Lifetime Distribution

  • Kim, Hee-Jae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.1055-1065
    • /
    • 2003
  • We shall propose maximum likelihood, Bayesian and generalized maximum likelihood estimation for the reliability of the two-unit hot standby system with exponential lifetime distribution that switch is perfect. Each estimation will be compared numerically in terms of various mission times, parameter values and asymptotic relative efficiency through Monte Carlo simulation.

  • PDF

A Study of MOE Establishment for Improving the Credibility of UGV Effectiveness Analysis (무인지상로봇 효과분석의 신뢰성 향상을 위한 효과척도 설정방안 연구)

  • Lee, Jaeyeong;Pyun, Jaijeong;Kim, Chongman
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.197-202
    • /
    • 2014
  • In the 21st century, the roles of UGV in the ground battle draw its attention and many research about how to use it is going on globally, but not many study is doing about how to measure its combat effectiveness in the battle. Basically, the effectiveness of UGV is different from its mission profile. Hence, we proposed Measures Of Effectiveness which can measure the UGV effectiveness based on five different missions such as mine detection, nbc detection, reconnaissance, rescue, and fire mission. We expect that these Measures Of Effectiveness proposed are able to contribute to increase the credibility of the study results for UGV effectiveness. We also hope that this paper can stimulate to expand the research scope and related field about UGV effectiveness in the future.

ASIC for Ethernet based real_time communication in DCS

  • Nakajima, Takeshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1836-1839
    • /
    • 2005
  • We have developed Ethernet based real-time communication systems called "Vnet/IP" for DCS which is the control system for process automation. This paper describes the features and the technologies of the ASIC which is utilized in the communication interface hardware for Vnet/IP. Vnet/IP has been developed for mission-critical communications. Hence it has real-time feature, high reliability and precise time synchronization capability. At the same time, it is able to deal with standard protocols without influence on mission-critical communications. The communication interface hardware has a host interface and dual redundant network interfaces. The host interface can be chosen PCI-bus or R-bus which is the proprietary internal bus developed for the high reliable redundant controller. Each network interface is a RJ45 connection with 1Gbps maximum in compliance with IEEE802.3.

  • PDF

Development and Testing of Satellite Operation System for Korea Multipurpose Satellite-I

  • Mo, Hee-Sook;Lee, Ho-Jin;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • The Satellite Operation System (SOS) has been developed for a low earth orbiting remote sensing satellite, Korea Multipurpose Satellite-I, to monitor and control the spacecraft as well as to perform the mission operation. SOS was designed to operate on UNIX in the HP workstations. In the design of SOS, flexibility, reliability, expandability and interoperability were the main objectives. In order to achieve these objectives, a CASE tool, a database management system, consultative committee for space data systems recommendation, and a real-time distributed processing middle-ware have been integrated into the system. A database driven structure was adopted as the baseline architecture for a generic machine-independent, mission specific database. Also a logical address based inter-process communication scheme was introduced for a distributed allocation of the network resources. Specifically, a hotstandby redundancy scheme was highlighted in the design seeking for higher system reliability and uninterrupted service required in a real-time fashion during the satellite passes. Through various tests, SOS had been verified its functional, performance, and inter-face requirements. Design, implementation, and testing of the SOS for KOMPSAT-I is presented in this paper.

  • PDF

A Study on a Simulation Model to Analyze the Availability of a SoS (복합시스템 가용도 분석을 위한 시뮬레이션 모델 연구)

  • Kim, Hye-Lyeong;Kim, Ui-Hwan;Choi, Sang-Yeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1049-1057
    • /
    • 2011
  • Today, most weapon systems operate as component systems of SoS(System of Systems) and they produce synergy effects in the battle field by interoperating. In addition, the acquisition issues on weapon systems have expanded into SoS context including sustainment analysis. Availability is the sustainment KPP(Key Performance Parameter) of weapon systems. In this paper, a simulation model is proposed to analyze the availability of SoS. The simulation model consists of 5 modules: Mission and Task, System, System RBD, Maintenance system and a simulation engine. Then it was implemented and applied to a SoS. As a result of the application, the simulation model could be applied for analyzing the availability of the SoS and provided information about critical tasks and risky component systems to complete the given mission of the SoS.

A Study on the Reliability of Space Launch Vehicle (우주발사체 신뢰성 분석기법에 관한 연구)

  • Yoo, Seung-Woo;Park, Keun-Young;Lee, Kyung-Chol;Lee, Sang-Jun
    • Journal of Applied Reliability
    • /
    • v.4 no.2
    • /
    • pp.105-119
    • /
    • 2004
  • Reliability program is essential to the development of space systems like launch vehicles and satellites, as they are non-repairable after launch and the failure of a launch vehicle resulted in catastrophic consequences for the mission. Foreign advanced space organizations have developed and implemented their own reliability management programs for launch vehicles from the conceptual design stage to the detail processes for the individual components, procedures and test reports. A study on the launch failures and the reliability analysis methods for one-shot devices contained in this paper will contribute to the reliability improvement for Korean launch vehicle and components.

  • PDF