• Title/Summary/Keyword: Mission Automation

Search Result 32, Processing Time 0.024 seconds

Analysis and Design of the Automatic Flight Dynamics Operations For Geostationary Satellite Mission

  • Lee, Byoung-Sun;Hwang, Yoo-La;Park, Sang-Wook;Lee, Young-Ran;Galilea, Javier Santiago Noguero
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.267-278
    • /
    • 2009
  • Automation of the key flight dynamics operations for the geostationary orbit satellite mission is analyzed and designed. The automation includes satellite orbit determination, orbit prediction, event prediction, and fuel accounting. An object-oriented analysis and design methodology is used for design of the automation system. Automation scenarios are investigated first and then the scenarios are allocated to use cases. Sequences of the use cases are diagramed. Then software components and graphical user interfaces are designed for automation. The automation will be applied to the Communication, Ocean, and Meteorology Satellite (COMS) flight dynamics system for daily routine operations.

Future Direction of Mission Operation System for Satellite Constellation and the Automation Priority Evaluation (군집위성 임무운영시스템 발전방향 및 자동화 우선순위 평가)

  • Jung, Insik;Yoon, Jeonghun;Lee, Myungshin;Lee, Junghyun;Kwon, Kybeom
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.10-22
    • /
    • 2022
  • According to the Space Development Promotion Basic Plan, more than 110 satellites are expected to be deployed by 2031. Accordingly, the operation concept and technology for satellites constellation are required, compared to the existing few multi-satellite operations. It is essential to automate and optimize the mission operation system, for efficient operation of the satellite constellation, and preparations are urgently needed for the operation of satellite constellation in domestic as well. In this study, the development direction and strategy of the mission operation system applying automation and optimization for efficient operation of the satellite constellation are proposed. The framework for evaluating the automation level and priority of the mission operation system was developed, to identify the tasks to which automation should be applied preferentially.

Analysis and Design of the Generic Mission Operations System (통합지향형 임무운용시스템 분석 및 설계)

  • Jung, Ok-Chul;Kim, Hae-Dong;Choi, Su-Jin;Chung, Dae-Won
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.127-132
    • /
    • 2009
  • This paper represents the analysis and design of the generic mission operations system for next generation satellite mission. In the past, mission operations systems were developed by their own mission requirements respectively. However, these systems have the similar architecture and common functions. Mission operations systems, in general, consist of mission independent module and mission specific module. In this paper, the generic framework for the mission scheduling and automation are introduced and analyzed. Using these generic frameworks, the risk and cost for operations system development can be reduced significantly. And, these frameworks might be used for the core technology in the development of mission operations system in the future.

  • PDF

Improved Drone Delivery System Through User Authentication and Mission Automation Using EdgeCPS (EdgeCPS를 활용한 사용자 인증 및 임무 자동화를 통한 드론 배송 시스템 개선)

  • MinGuen Cho;MinKi Beak;EuTeum Choi;DongBeom Ko;SungJoo Kang;SeongJin Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.141-150
    • /
    • 2023
  • Currently, various companies are actively participating in research and development of drone delivery services. Existing studies do not comprehensively provide integrated functions for future drone delivery services such as mission automation, customer verification, and overcoming performance limitations, which can lead to high manpower demand, reduced user service trust, and potentially overloading low-end devices. Therefore, this study proposes a drone mission automation system (DMAS) using EdgeCPS technology to provide the three aforementioned functions in an integrated manner. Real-world experiments were conducted to evaluate the proposed system, demonstrating that the DMAS components operate according to the specified roles in the delivery scenario. In addition, the system achieved user verification with a similarity of more than 90% in the process of receiving the product, and verified a faster inference speed and a lower resource share than the existing method.

Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

  • Park, Sang-Wook;Lee, Young-Ran;Lee, Byoung-Sun;Hwang, Yoo-La;Galilea, Javier Santiago Noguero
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.635-642
    • /
    • 2009
  • This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator's tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system's quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

The Development of Performance Analysis Code for Conceptual Design of Jet Fighters (전투기의 개념설계를 위한 성능해석 프로그램 개발)

  • Kim, Taewoo;Choi, Hyunmin;Choi, Byungryul;Lee, Sungjin;Nam, Hwajin;Choi, Donghoon;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.404-414
    • /
    • 2013
  • In the conceptual design phase of jet fighters, the trade study is performed repeatedly for a selection of the baseline configuration. The automation of repeated trade study makes possible to select efficiently the baseline configuration. In this study, the performance analysis code was developed for the automation of trade study. The code was consists of the module of shape generation, the module of weight estimation, the module of mission performance analysis. 3D CAD Model can be generated by the module of shape generation and Weight can be estimated by using the empirical equation in the module of weight estimation. The module of mission performance analysis was able to calculate the mission performance about the arbitrary mission profile. In addition, the optimal mission performance can be calculated by using optimization method. By performing the validation, the code was confirmed to be able to apply to the conceptual design phase.

ASIC for Ethernet based real_time communication in DCS

  • Nakajima, Takeshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1836-1839
    • /
    • 2005
  • We have developed Ethernet based real-time communication systems called "Vnet/IP" for DCS which is the control system for process automation. This paper describes the features and the technologies of the ASIC which is utilized in the communication interface hardware for Vnet/IP. Vnet/IP has been developed for mission-critical communications. Hence it has real-time feature, high reliability and precise time synchronization capability. At the same time, it is able to deal with standard protocols without influence on mission-critical communications. The communication interface hardware has a host interface and dual redundant network interfaces. The host interface can be chosen PCI-bus or R-bus which is the proprietary internal bus developed for the high reliable redundant controller. Each network interface is a RJ45 connection with 1Gbps maximum in compliance with IEEE802.3.

  • PDF

Adaptive Mission Control Architecture with Flexible Levels of Autonomy (유연한 자율화 수준의 적응형 임무통제 아키텍처)

  • Wonik Park;Hojoo Lee;Joonsung Choi;Tokson Choe;Chonghui Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.265-276
    • /
    • 2024
  • The future battlefield operation concept does not focus on advanced and complete weapon systems, but requires a new battlefield operation concept that can effectively demonstrate offensive power by combining a large number of low-cost, miniaturized weapons. Recently, research on the autonomous application of major technologies that make up the mission control system is actively underway. However, since the mission control system is still dependent on the operator's operating ability when operating multiple robots, there are limitations to simply applying the automation technology of the existing mission control system. Therefore, we understand how changes in operator capabilities affect multi-robot operation and propose an adaptive mission control architecture design method that supports multi-robot integrated operation by adjusting the level of autonomy of the mission control system according to changes in operator capability.

Development of Feedback Data Automated Verification Program for Mission S/W (임무 S/W 시험을 위한 피드백 데이터의 기댓값 검증 자동화 도구 개발)

  • Kwon, GI-Bong;Lee, Ha-Yoeun;Ha, Seok-Wun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.871-877
    • /
    • 2021
  • Aircraft defects are important matters directly related to the operation of the aircraft and the life of the pilot. The defects in the mission software that occur during aircraft control seriously affect the pilot's mission performance and safety. Therefore, the organization in charge of aircraft development or software defects are reinforced in the process to identify and eliminate defects in the early stages of development, and a lot of labor and time are spent, but due to the nature of the mission software, strong functional coupling with other avionics and high complexity, so there are restrictions on the identification and removal of software defects through the existing test method. This study analyzes the effect of securing mission software integrity and reducing test cost through data integrity verification by developing a tool that automates the verification of expected value of feedback data among communication data of mission computer interlocking equipment.

The Trend of Satellite Mission Operations Team (위성 임무운영팀 동향)

  • Lee, Myeong-Shin;Jung, Ok-Chul;Chung, Dae-Won;Park, Sun-Ju;Shin, Jung-Hoon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.105-115
    • /
    • 2008
  • The organization for satellite operation team is mainly based on the number of satellites to be controlled, operator's workload of payload operation support and the degree of automation of the operation system. Although the structure and its functionality of satellite operation organization are a little different according to the complexity of the operation, most satellite control centers have adapted the similar architecture for single or multiple satellite support. KARI Satellite Operation Center(KSOC) has started its simple mission operations since the launch of KOMPSAT-1(21st Dec. 1999) and has been evolving into multiple mission operations for various satellites such as KOMPSAT-2, KOMPSAT-3, KOMPSAT-5 and COMS(Communication Ocean Meteorological Satellite). This paper presents the appropriate direction of future deployment for KSOC by comparing the current status with the recommendation of the advanced satellite operation organization and analyzing their experiences in order to propose the better solution for efficient and safe satellite operations.

  • PDF