Genetic variance and covariance components of the linear traits and the ordered categorical traits, that are usually observed as dichotomous or polychotomous outcomes, were simultaneously estimated in a multivariate threshold animal model with concepts of arbitrary underlying liability scales with Bayesian inference via Gibbs sampling algorithms. A multivariate threshold animal model in this study can be allowed in any combination of missing traits with assuming correlation among the traits considered. Gibbs sampling algorithms as a hierarchical Bayesian inference were used to get reliable point estimates to which marginal posterior means of parameters were assumed. Main point of this study is that the underlying values for the observations on the categorical traits sampled at previous round of iteration and the observations on the continuous traits can be considered to sample the underlying values for categorical data and continuous data with missing at current cycle (see appendix). This study also showed that the underlying variables for missing categorical data should be generated with taking into account for the correlated traits to satisfy the fully conditional posterior distributions of parameters although some of papers (Wang et al., 1997; VanTassell et al., 1998) presented that only the residual effects of missing traits were generated in same situation. In present study, Gibbs samplers for making the fully Bayesian inferences for unknown parameters of interests are played rolls with methodologies to enable the any combinations of the linear and categorical traits with missing observations. Moreover, two kinds of constraints to guarantee identifiability for the arbitrary underlying variables are shown with keeping the fully conditional posterior distributions of those parameters. Numerical example for a threshold animal model included the maternal and permanent environmental effects on a multiple ordered categorical trait as calving ease, a binary trait as non-return rate, and the other normally distributed trait, birth weight, is provided with simulation study.
Journal of The Korean Society of Integrative Medicine
/
v.10
no.3
/
pp.151-159
/
2022
Purpose : The purpose of this study was to investigate the structural relationships between fear of missing out, addictive tendencies toward social network services (SNSs), and depression in colleges. Methods : The target subjects were students in colleges across gyeongnam & busan, to whom the purpose of the study was explained and who spontaneously agreed to participate. A survey was conducted with 302 participants over 31 days from March 7, 2022, and data from 299 responses was analyzed. Results : 1. Women felt a higher fear of missing out than men. 2. Women showed greater inability to control their use of SNSs, more SNS-related disorders in daily life, and greater immersion in and tolerance of SNSs when compared to men. 3. Women were more depressed than men. 4. Positive correlations were observed between the fear of missing out and SNS-addictive tendencies, between the fear of missing out and depression, and between SNS-addictive tendencies and depression. Conclusion : A comprehensive review of these findings suggests that women had overall higher levels of isolation fear, SNS-addictive tendencies, and depression than men. Based on this, universities should provide gender-specific educational programs around these issues; this student cohort will ultimately work in healthcare, and this kind of awareness will be essential for treating patients. Considering that the current situation poses unusual challenges due to the COVID-19 pandemic, the study's results can serve as basic data for planning educational programs in the future. Over the coming years, comprehensive and continuous education and counselling relating to the fear of missing out, SNS addiction, and depression will be urgently required.
The amount and continuity of precipitation data used in a hydrological analysis may exert a big influence on the reliability of the analysis. It is a fundamental process to estimate the missing data caused by such as a breakdown of the rainfall recording machine or to expand a short period of rainfall data. In this study a linear programming method treated as a data-driven approach for estimating the missing rainfall data is compared with seven other methods widely used and its superiority is certified. The data used in this research are annual precipitation ones during 17 years at the Cheolwon station including an ungauged period of 15 years and its five surrounding stations. By use of this certified method the ungauged precipitation values at the Cheolweon station are estimated and the areal averages of annual precipitation data for 32 years at the Han River basin are calculated.
Rainfall data is the most basic input data to analyze the hydrological phenomena and can be missing due to various reasons. In this research, a neural network based model to estimate missing rainfall data as approximate values was developed for 12 rainfall stations in the Soyang river basin to improve existing methods. This approach using neural network has shown to be useful in many applications to deal with complicated natural phenomena and displayed better results compared to the popular offline estimating methods, such as RDS(Reciprocal Distance Squared) method and AMM(Arithmetic Mean Method). Additionally, we proposed automated data reconciliation systems composed of a neural network learning processer to be capable of real-time reconciliation to transmit reliable hydrological data online.
The main purpose of this paper is to predict missing absolute out-of-plane displacements and failure limits of infill walls by artificial neural network (ANN) models. For this purpose, two shake table experiments are performed. These experiments are conducted on a 1:1 scale one-bay one-story reinforced concrete frame (RCF) with an infill wall. One of the experimental models is composed of unreinforced brick model (URB) enclosures with an RCF and other is composed of an infill wall with bed joint reinforcement (BJR) enclosures with an RCF. An artificial earthquake load is applied with four acceleration levels to the URB model and with five acceleration levels to the BJR model. After a certain acceleration level, the accelerometers are detached from the wall to prevent damage to them. The removal of these instruments results in missing data. The missing absolute maximum out-of-plane displacements are predicted with ANN models. Failure of the infill wall in the out-of-plane direction is also predicted at the 0.79 g acceleration level. An accuracy of 99% is obtained for the available data. In addition, a benchmark analysis with multiple regression is performed. This study validates that the ANN-based procedure estimates missing experimental data more accurately than multiple regression models.
Objective: The objective of this study was to determine the best approach for handling missing records of first to successful insemination (FS) in Japanese Black heifers. Methods: Of a total of 2,367 records of heifers born between 2003 and 2015 used, 206 (8.7%) of open heifers were missing. Four penalty methods based on the number of inseminations were set as follows: C1, FS average according to the number of inseminations; C2, constant number of days, 359; C3, maximum number of FS days to each insemination; and C4, average of FS at the last insemination and FS of C2. C5 was generated by adding a constant number (21 d) to the highest number of FS days in each contemporary group. The bootstrap method was used to compare among the 5 methods in terms of bias, mean squared error (MSE) and coefficient of correlation between estimated breeding value (EBV) of non-censored data and censored data. Three percentages (5%, 10%, and 15%) were investigated using the random censoring scheme. The univariate animal model was used to conduct genetic analysis. Results: Heritability of FS in non-censored data was $0.012{\pm}0.016$, slightly lower than the average estimate from the five penalty methods. C1, C2, and C3 showed lower standard errors of estimated heritability but demonstrated inconsistent results for different percentages of missing records. C4 showed moderate standard errors but more stable ones for all percentages of the missing records, whereas C5 showed the highest standard errors compared with noncensored data. The MSE in C4 heritability was $0.633{\times}10^{-4}$, $0.879{\times}10^{-4}$, $0.876{\times}10^{-4}$ and $0.866{\times}10^{-4}$ for 5%, 8.7%, 10%, and 15%, respectively, of the missing records. Thus, C4 showed the lowest and the most stable MSE of heritability; the coefficient of correlation for EBV was 0.88; 0.93 and 0.90 for heifer, sire and dam, respectively. Conclusion: C4 demonstrated the highest positive correlation with the non-censored data set and was consistent within different percentages of the missing records. We concluded that C4 was the best penalty method for missing records due to the stable value of estimated parameters and the highest coefficient of correlation.
Categorical data with non-responses are frequently observed in election poll surveys, and can be represented by incomplete contingency tables. To estimate supporting rates of candidates, the identification of the missing mechanism should be pre-determined because the estimates of non-responses can be changed depending on the assumed missing mechanism. However, it has been shown that it is not possible to identify the missing mechanism when using observed data. To overcome this problem, sensitivity analysis has been suggested. The previously proposed sensitivity analysis can be applicable only to two-way incomplete contingency tables with binary variables. The previous sensitivity analysis is inappropriate to use since more than two of the factors such as region, gender, and age are usually considered in election poll surveys. In this paper, sensitivity analysis suitable to an multi-dimensional incomplete contingency table is devised, and also applied to the 19th Korean presidential election poll survey data. As a result, the intervals of estimates from the sensitivity analysis include actual results as well as estimates from various missing mechanisms. In addition, the properties of the missing mechanism that produce estimates nearest to actual election results are investigated.
Communications for Statistical Applications and Methods
/
v.19
no.1
/
pp.157-168
/
2012
The EM algorithm is the most important tool to obtain the maximum likelihood estimator in finite mixture models due to its stability and simplicity. However, its convergence rate is often slow because the conventional EM algorithm is based on a large missing data space. Several techniques have been proposed in the literature to reduce the missing data space. In this paper, we review existing methods and propose a new EM algorithm for Gaussian mixtures, which reduces the missing data space while preserving the stability of the conventional EM algorithm. The performance of the proposed method is evaluated with other existing methods via simulation studies.
Journal of the Korean Institute of Intelligent Systems
/
v.17
no.3
/
pp.397-402
/
2007
In this paper, we present a method for clustering incomplete Microarray data using alternating optimization in which a prior imputation method is not required. To reduce the influence of imputation in preprocessing, we take an alternative optimization approach to find better estimates during iterative clustering process. This method improves the estimates of missing values by exploiting the cluster Information such as cluster centroids and all available non-missing values in each iteration. The clustering results of the proposed method are more significantly relevant to the biological gene annotations than those of other methods, indicating its effectiveness and potential for clustering incomplete gene expression data.
Seong-Hun Jeong;Jun-Ik Ma;Seong-Hyun Jo;Gi-Ryun Lim;Jun-Woo Lee;Jun-Hee Han
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.06a
/
pp.72-74
/
2022
Several types of data are collected from buoy due to the development of hardware technology.. However, the collected data are difficult to use due to errors including missing values and outliers depending on mechanical faults and meteorological environment. Therefore, in this study, linear interpolation is performed by adding the missing time data to enable machine learning to the insufficient meteorological data. After the linear interpolation, XGBoost and KNN-regressor, are used to forecast error data and suggested model is evaluated by using real-world data of a buoy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.