References
- Biernacki, C. and Chretien, S. (2003). Degeneracy in the maximum likelihood estimation of univariate gaussian mixtures with EM, Statistics and Probability Letters, 61, 373-382. https://doi.org/10.1016/S0167-7152(02)00396-6
- Celeux, G., Chretien, S., Forbes, F. and Mkhadri, A. (1999). A component-wise EM algorithm for mixtures, Technical Report, Inria 3746, (http://www.inria.fr/RRRT/publications-fra.html).
- Celeux, G., Chretien, S., Forbes, F. and Mkhadri, A. (2001). A component-wise EM algorithm for mixtures, Journal of Computational and Graphical Statistics, 10, 697-712. https://doi.org/10.1198/106186001317243403
- Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood for incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B, 39, 1-38.
- Fessler, J. A. and Hero, A. O. (1994). Space-alternating generalized expectation-maximization algorithm, IEEE Transactions on Signal Processing, 42, 2664-2677. https://doi.org/10.1109/78.324732
- Liu, C. and Rubin, D. B. (1994). The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence, Biometrika, 81, 633-648. https://doi.org/10.1093/biomet/81.4.633
- Liu, C. and Sun, D. X. (1997). Acceleration of EM algorithm for mixture models using ECME, Proceedings of the Statistical Computing Section, Alexandria, VA: ASA,, 109-114.
- McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models, Hohn Wiley and Sons Ltd., New York.
- Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika, 80, 267-278. https://doi.org/10.1093/biomet/80.2.267
- Pilla, R. S. and Lindsay, B. G. (1996). Alternative EM methods for nonparametric finite mixture models, Biometrika, 88, 535-550. https://doi.org/10.1093/biomet/88.2.535
- Wang, Y. (2007). On fast computation of the non-parametric maximum likelihood estimate of a mixing distribution, Journal of the Royal Statistical Society, Series B, 69, 185-198. https://doi.org/10.1111/j.1467-9868.2007.00583.x