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Abstract
The EM algorithm is the most important tool to obtain the maximum likelihood estimator in finite mixture

models due to its stability and simplicity. However, its convergence rate is often slow because the conventional
EM algorithm is based on a large missing data space. Several techniques have been proposed in the literature
to reduce the missing data space. In this paper, we review existing methods and propose a new EM algorithm
for Gaussian mixtures, which reduces the missing data space while preserving the stability of the conventional
EM algorithm. The performance of the proposed method is evaluated with other existing methods via simulation
studies.

Keywords: EM algorithm, ECM algorithm, constrained Newton method.

1. Introduction

For finite mixture models, the maximum likelihood estimator(MLE) does not have a closed form
and requires some numerical strategy to find the MLE. Newton-type optimization algorithms can be
used as a general purpose; however, they are unstable and hard to program because mixture models
involve a large number of parameters and the mixture likelihood has multiple modes. The expectation-
maximization(EM) (Dempster et al., 1977) algorithm would be an easy and stable alternative in this
case.

The EM algorithm is notoriously slow in many cases. The convergence rate of the EM algorithm
depends mainly on the amount of missing information as illustrated in Dempster et al. (1977). The
conventional EM algorithm for mixtures is constructed based on a large missing data space that in-
volves all component membership variables. This results in a large missing data space and leads to
a slow convergence. If we could characterize a given problem with a smaller missing data space we
would expect a faster convergence. This model reduction technique is well studied in Meng and Rubin
(1993) and Liu and Rubin (1994), who deem this type of EM algorithms the expectation-conditional-
maximization(ECM) algorithm.

Some variants utilize the ECM algorithm in the mixture literature. Celeux et al. (2001) proposed
a component-wise EM algorithm for mixtures(CEMM) that updates each set of component param-
eters and the corresponding mixing weight at each iteration as a tool to reduce missing data space.
The CEMM is also considered a Space-Alternating Generalized EM(SAGE) algorithm (Fessler and
Hero, 1994) that updates each component parameter based on the reduced missing data space and
the mixing proportions with the complete data space. The SAGE algorithm for the Gaussian mixture
models is derived in Celeux et al. (1999). Pilla and Lindsay (1996) merged several components to
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reduce missing data space in each CM step, but this can only be used for the estimation of component
proportions with known component densities. Liu and Sun (1997) used a different strategy to reduce
missing data space called the ECME algorithm. They used the conventional EM algorithm for the
parameters in the component densities; however, the mixing weights are updated directly from the
observed likelihood instead of the complete likelihood. Since the ECME algorithm does not use any
missing data space when it estimates mixing proportions, it is expected to be quite fast. However, the
estimation of mixing proportions in the observed likelihood is often unstable, so it loses one of the
great advantages of using the conventional EM algorithm in mixtures.

In this paper, we propose a stable ECME algorithm using the constrained Newton method for
mixing proportions suggested by Wang (2007). The proposed method can also be accelerated by
combining CEMM or SAGE algorithms without significant computing effort. This paper is organized
as follows: In Section 2 and Section 3, we give a brief review of the existing algorithms including
the conventional EM algorithm and the constrained Newton method. In Section 4, we illustrate the
proposed algorithm by combining the SAGE with the constrained Newton method. Some simulation
studies and concluding remarks are then given in Section 5 and Section 6.

2. Review of Some Existing Methods

In this section, we briefly review the conventional EM algorithm and its variants for finite mixture
models. Let us consider a finite d-variate normal mixture model,

f (x; θ) =
m∑

j=1

p j f
(
x;µ j,Σ j

)
,

where θ = (µ1, . . . ,µm,Σ1, . . . ,Σm, p1, . . . , pm) with constraints p j > 0 and
∑

p j = 1. Throughout this
paper, we use bold faced lower and upper case letters to represent a vector and a matrix, respectively.
Since typical Newton type algorithms are known to be very unstable and difficult to program, the
EM algorithm will be used to obtain the MLE of θ. The EM algorithm has many good properties
such as simplicity, stability, and monotone convergence. To construct the conventional EM algorithm,
one needs to interpret the mixture model as a component missing problem. That is, we assume that
each observation xi comes from one of the component densities while the component membership is
missing. In this case, if we define the component membership indicator zi j as

zi j =

{
1, if xi comes from jth component,
0, elsewhere

the joint density of (xi, zi1, . . . , zim) can then be expressed as
m∏

j=1

(
p j f

(
xi;µ j,Σ j

))zi j
. (2.1)

Now, based on the observed xi and the unobserved zi1, . . . , zim, i = 1, . . . , n, the conventional EM
algorithm to obtain the MLE of θ is constructed as follows:

E-step: For the current estimate θ(t)

Q
(
θ|θ(t)

)
=

n∑
i=1

E

 log


m∏

j=1

(
p j f

(
xi;µ j,Σ j

))zi j


∣∣∣∣∣∣∣∣ xi, p(t),µ(t)

j ,Σ
(t)
j
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=

n∑
i=1

m∑
j=1

ẑi j log p j +

n∑
i=1

m∑
j=1

ẑi j log f
(
xi;µ j,Σ j

)
,

where

ẑi j = E
(
zi j|xi,µ

(t)
j ,Σ

(t)
j

)
=

p(t)
j f

(
xi;µ

(t)
j ,Σ

(t)
j

)
∑m

j=1 p(t)
j f

(
xi;µ

(t)
j ,Σ

(t)
j

) .
M-step:

p(t+1)
j =

1
n

n∑
i=1

ẑi j,

µ(t+1)
j =

∑n
i=1 ẑi jxi

np(t+1)
j

,

Σ
(t+1)
j =

∑n
i=1 ẑi jxT

i xi

np(t+1)
j

−
(
µ(t+1)

j

)T
µ(t+1)

j .

Note that the missing data space for this conventional EM algorithm is (zi1, . . . , zim) for each i.
The CEMM algorithm decomposes the parameter space into each set of component parameters so
that we can reduce missing data space. At each iteration t, the EM algorithm is used only to update
(µ j∗ ,Σ j∗ , p j∗ ), where j∗ = mod(t − 1,m) + 1 and mod(a, b) is the remainder when dividing a by b.
So, in each EM step, the missing data space is reduced to (zi j∗). Although it requires to visit every
j = 1, . . . ,m like the conventional EM, one can expect a faster convergence than the conventional EM
because the CEMM requires a smaller missing data space. This also appeals to our intuition as the
CEMM uses the new information as soon as it is available. One potential drawback of the CEMM is
that the sum of p(t)

j ’s may not add up to one. But Celeux et al. (2001) showed that the sum of p(t)
j ’s

should eventually be one upon its convergence.
Similar to the CEMM, the SAGE algorithm only updates (µ j∗ ,Σ j∗) but with the fixed current

mixing proportion estimator p(t) at each iteration. After all (µ j,Σ j)’s are updated, p = (p1, . . . , pm)T

is updated simultaneously as in the conventional EM. The SAGE keeps the monotonicity while the
CEMM does not guarantee the monotonicity, because the sum of the updated p j’s is not necessarily
one. The main difference between the CEMM and SAGE is that the SAGE algorithm requires the
complete data space when it updates (p1, . . . , pm) while the CEMM only requires a reduced missing
data space for each update.

The ECME algorithm updates (µ j,Σ j)’s using the conventional EM algorithm, but it updates
(p1, . . . , pm) from the observed likelihood rather than the complete likelihood using Newton-type
algorithms. For example, the new update p(t+1) can be updated by iterating p(t+1) = p(t) − H−1G (Liu
and Sun, 1997), where

(G) j =

n∑
i=1

ẑi j − ẑim

qi
,

(H) jk = −
n∑

i=1

(
ẑi j − ẑim

qi

) (
ẑik − ẑim

qi

)
,
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and qi =
∑

p(t)
j ẑi j. Since only one iteration of the Newton-Raphson method is typically required,

the ECME dramatically improves the conventional EM algorithm without an extra computing cost.
Celeux et al. (2001) showed simple simulation studies to measure the performance of ECME, CEMM,
SAGE, and the conventional EM algorithm. They reported that the ECME algorithm is unstable and
requires more computing time than others. We could not exactly follow their programming; however,
based on our MATLAB code, the ECME requires slightly more computing time than the conventional
EM for each iteration.

Another advantage of the ECME is that it requires a new coding only for mixing proportions, thus
it can be transferable to the mixtures of any family of component densities and multi-dimensional
mixtures. However, as Celeux et al. (2001) reported, the ECME often breaks down as it inherits the
instability of the Newton method. In the next section, we introduce the constrained Newton method
suggested by Wang (2007) that will play a core role in the stabilization of the ECME algorithm.

3. Constrained Newton Method for Multiple Support Points

To remove the instability for the estimation of the mixing proportions in the ECME algorithm, we
propose to use the method suggested by Wang (2007) who develops a method to update mixing pro-
portions for nonparametric mixture models that is called the constrained Newton method for multiple
supports(CNM). The basic idea is to transform the maximization problem with known parameters of
component densities into a least square estimation with constraints using a quadratic approximation
of the log likelihood.

For a fixed (µ j,Σ j)’s, the log likelihood of p = (p1, . . . , pm)T is given by

ℓ(p) ≡
n∑

i=1

log
(
pT fi

)
=

n∑
i=1

log

 m∑
j=1

p j f
(
xi;µ j,Σ j

) ,
where fi j = f

(
xi; µ j,Σ j

)
and fi = ( fi1, . . . , fim)T . The first and second derivatives of ℓ(p) is then

calculated as

∇pℓ(p) ≡
n∑

i=1

fi

pT fi
= ST 1

and

∇2
pℓ(p) ≡ −

n∑
i=1

fi f T
i

(pT fi)2 = −ST S,

where 1 is the column vector having all elements one with length n, and ST = ( f1/(pT f1), . . . , fn/(pT fn)).
Now, using the Taylor expansion, ℓ(p) around the current estimate p(t) can be approximated by

ℓ(p) − ℓ
(
p(t)

)
≈

(
p− p(t)

)
ST

(t)1 −
1
2

(
p− p(t)

)T
ST

(t)S(t)

(
p− p(t)

)
(3.1)

= −1
2

(∥∥∥∥S(t)

(
p− p(t)

)∥∥∥∥2
− 2

(
p− p(t)

)
ST

(t)1 + ∥1∥2
)
+
∥1∥2

2

= −1
2

∥∥∥∥S(t)

(
p− p(t)

)
− 1

∥∥∥∥2
+

n
2

= −1
2

∥∥∥S(t) p− 2
∥∥∥2
+

n
2
,
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where S(t) = S|p=p(t) and 2 is the column vector having all elements two with length n. Then maximiz-
ing ℓ(p) is approximately equivalent to solving the least square problem ∥Sp− 2∥2 with constraints∑

j p j = 1 and p j > 0 for all j = 1, . . . ,m. There are some built-in functions in R or MATLAB to
solve this problem. For a detailed description, see Wang (2007)

For a given S, solving this least square problem does not require much computing cost; in addition,
as shown in the next section, S can be obtained as a byproduct if we apply this to the ECME or SAGE
algorithm.

4. SAGE with CNM

Now we illustrate the proposed algorithm that combines the SAGE with the CNM. The SAGE algo-
rithm only updates the parameters of each component density in the reduced missing data space. The
mixing proportions are then updated under the complete data space. One drawback of the SAGE is
that it requires the complete data space, hence it is not significantly faster than the conventional EM
or CEMM. To improve this, we use the CNM algorithm to update mixing proportions. The AECME
algorithm (Celeux et al., 2001) is basically constructed with the same idea but it is very unstable be-
cause it uses the Newton algorithm; however, the CNM algorithm is stable without extra computing
effort. We summarize this combined algorithm as follows:

1. For fixed µ(t)
j and Σ(t)

j , compute n×m matrix F = ( f1, . . . , fm) where f j = ( f (xi;µ
(t)
j ,Σ

(t)
j ), . . . , f (xn;

µ(t)
j ,Σ

(t)
j ))T , and set G = FD(p(t)), where D(a) is the diagonal matrix with the diagonal entry a.

2. Compute a column vector s j = (D((G•+))−1 f j and z j = p(t)
j s j for each j = 1, . . .m, where G•+ =

(
∑

j(G)1 j, . . . ,
∑

j(G)n j) and (G)i j is the (i, j)th element of G.

3. Repeat (a) and (b) from j = 1 to m.

(a) Update µ j and Σ j as

µ(t+1)
j = zT

j X,

and

Σ
(t+1)
j =

XT D
(
z j

)
X

1T z j
−

(
µ(t+1)

j

)T (
µ(t+1)

j

)
,

where X = (xT
1 , . . . , xT

n )T .

(b) Based on µ(t+1)
j and Σ(t+1)

j , update f j, the jth column of G, s j, and z j in turn.

4. Construct n × m matrix S = (s1, . . . , sm) and apply the one-step CNM method to update p(t+1) and
go to Step 3 until it meets some stopping criteria.

At a glance, this algorithm seems different from the conventional EM algorithm. However, Step
1 and 2 are just a reformulation of the E-step in Section 2 so that we can handle each component
separately. This also allows us to immediately use the updated information obtained at jth component
for the update of ( j+1)th component without further computation. Another advantage of this is that the
matrix S can be automatically obtained at the end of Step 3 as a byproduct. Note that the conventional
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Figure 1: Density plots for (a) · · · , (b) - - , (c) —

EM for mixtures requires the recomputation of f (xi;µ
(t+1)
j ,Σ(t+1)

j ) for each i and j at each iteration and
the overall computing time is greatly dominated by this computation. In the proposed algorithm, one
can see that the number of computations for f (xi;µ

(t+1)
j ,Σ(t+1)

j ) remains the same as the conventional
EM, so we can expect that this does not significantly increase the computing time for a single iteration.

5. Simulation Studies

In this section, we compare the proposed method with other existing methods. For simplicity, we
consider the following 3-component univariate normal mixture models:

(a)
1
3

N(−3, 1) +
1
3

N(0, 1) +
1
3

N(3, 1),

(b)
1
3

N(−3, 2) +
1
3

N(0, 2) +
1
3

N(3, 2),

(c)
1
3

N(−3, 3) +
1
3

N(0, 2) +
1
3

N(3, 3).

Model (a), (b), and (c) represent well, intermediately, and poorly separated mixture densities, respec-
tively. The shapes of these densities for (a), (b), and (c) are given in Figure 1. For our simulation
experiment, we generate n = 500 random samples from each normal mixture model.

When we summarize the results from any type of the EM algorithms for mixture models, we
should consider several irregular features of the mixture likelihood. First, since the mixture likelihood
has multiple modes, we may need multiple initial values for parameters to ensure the set of all con-
vergent parameter estimates contains the global maximizer. However, there is no guarantee whether
or not we have the global maximizer within the set of solutions we have. To avoid this issue in our
simulation, we choose the true parameter value as an initial value. We refer to this as a ‘good’ initial
value. Since choosing such a good initial value is unrealistic in practice, we also choose a ‘bad’ initial
value as

(µ1, µ2, µ3) = (0, 0.5, 1),
(
σ2

1, σ
2
2, σ

2
3

)
= (1, 1, 1), (p1, p2, p3) = (0.1, 0.8, 0.1)

which is far from the true parameter values. By doing so, we only measure the speed of each algorithm
without considering if they converge to the global maximum.

Second, although SAGE, the conventional EM, and the proposed algorithms always increase the
likelihood, they might converge to different local modes even with the same initial value. In this
case, we also need to consider whether they are singular or spurious likelihood solutions. It is well
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Table 1: Average ratios of required time to converge for each algorithm to the conventional EM algorithm. The
number in the parenthesis represents the cases where the used algorithm shows the best performance in 100
replications.

Quality of Algorithm Model
Initial values (a) (b) (c)

CEMM 0.7796(14) 0.7864(5) 0.8544(1)
good SAGE 0.7903(1) 0.7882(1) 0.8534(3)

NEW 0.7105(85) 0.5719(94) 0.5906(86)
CEMM 1.0636(21) 1.2471(38) 1.1898(37)

bad SAGE 0.8541(2) 0.9040(12) 0.8907(6)
NEW 0.7050(74) 0.6510(46) 0.6232(55)

known that the normal mixture likelihood is unbounded and the global maximizer always occurs on
the boundary of the parameter space. These global maximizers are often called a singular solution;
in addition, there are also cases where the parameter estimate is located near the boundary of the
parameter space but not exactly on the boundary.

In computational point of view, when EM-type algorithms move toward such singular or spurious
solutions, it converges to those likelihood solutions very quickly. Hence, if one of the considered
algorithms converges to such a (nearly) singular solution, its computing time would be very small
compared to other considered methods. In this case, the summary for the time or number of iterations
for each algorithm may give misleading interpretation for comparison purposes. For these reasons,
we summarize the cases where all tested algorithms produce the same answer. That is, for a given
simulated sample, if any of the considered algorithms produces a different answer, we ignore the
sample and redraw a new sample until all algorithms give the same answer. With this simulation
scheme, we measure the time and number of iterations until the difference of two consecutive log-
likelihood values is less than 10−7 for each algorithm.

Table 1 shows the average ratio of convergent times for CEMM, SAGE, and the proposed algo-
rithm compared to the conventional EM algorithm based on 100 replications. Note that the number in
the parenthesis stands for the cases in which the corresponding algorithm gives the shortest computing
time among all tested algorithms. Figure 2 and Figure 3 show the times to converge with the good
and bad initial values for the first 50 samples, respectively. For the well separated mixture, CEMM,
SAGE, and the proposed method, all reduce the computing time by 10–30%, compared to the conven-
tional EM. Under the poorly separated mixture, the proposed algorithm shows great time reduction
though CEMM and SAGE also show some improvement compared to the conventional EM. There
is also a significant improvement for the proposed method when the true initial value is used for the
proposed method. This is because the likelihood at a good initial value is approximated reasonably
well by the quadratic function used in (3.1).

For all scenarios, all algorithms show some improvement compared to the conventional EM but the
proposed method shows the best performance in terms of the time and the number of best performance
cases. This improvement is more evident when we use a good initial value or the underlying model is
not well-separated. We also measured the required time for a single EM iteration for each algorithm
and found that the time difference for all algorithms considered here does not exceed by more than
2%.

6. Concluding Remarks

To speed up the conventional EM algorithm for mixtures, we proposed a new algorithm which com-
bined the SAGE algorithm with the constrained Newton method. In some sense, the proposed al-
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Figure 2: Times to converge with the good initial value (1) —: Conventional EM, (2) · · · : CEMM, (3) - -:
SAGE, (4) (: New algorithm

gorithm can be considered a component-wise EM algorithm, because we sequentially update each
component parameters; however, it is not exactly a component-wise algorithm as the component mix-
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Figure 3: Times to converge with the bad initial value (1) —: Conventional EM, (2) · · · : CEMM, (3) - - : SAGE,
(4) (: New algorithm

ing proportions are updated simultaneously. Since it is obvious that the proposed algorithm requires
a smaller missing data space than the CEMM, SAGE, and conventional EM algorithm, it is natural to
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Figure 4: Number of iterations versus log-likelihood values for Conventional EM (—), CEMM (· · · ), SAGE (- -
-), and New algorithm (− · −) when the good initial value (a) and the bad initial value (b) are used

expect a faster convergence.
Since the ECME or AECME uses a similar reduction technique, it would also be interesting to

compare the proposed method with them. Indeed, we did some simulation experiments with the
ECME and AECME though it is not reported here. From those simulations, we found that their
performance is almost the same as the proposed method when they converge without failure. However,
they are quite unstable, especially when we use a bad initial value or poorly separated mixture model.
This instability would increase for mixtures with a large number of components.

It might be of great interest whether the proposed algorithm has a greater ability to find the global
maximizer or a local solution with a high likelihood value. Although we ignored the cases where
all algorithms do not give the same answer in our simulation, we also investigated such cases. The
frequency where such suboptimal results occur is rare when a good initial value is used or the sample
is drawn from a well separated mixture model. It is not obvious which algorithm tends to find a
solution with a higher likelihood; however, finding the global maximum is not always preferable as
we know the theoretical global maximizer is meaningless. Even after we exclude such situations,
a greater ability to find a local solution with a high likelihood could imply a higher chance to find
unwanted solutions due to nearly singular solutions. Hence, the ability to find a local mode with a
higher likelihood is not always a desirable property for the given algorithm in the mixture likelihood.

To explain this further, we choose one of replications where one of algorithms converges to a
different likelihood mode when the data are generated from the poorly separated mixture density in
Section 5. Figure 4 shows the log likelihood values over iterations for each algorithm when we use the
good and bad initial values used in Section 5. When the good initial value is used, all algorithms con-
verge to the same parameter value and the corresponding fitted density given in Figure 5 (a) is close to
the true density; however, when the bad initial value is used, CEMM converges to a suboptimal mode
and other algorithms converges to a mode with a higher likelihood value. Note that CEMM converges
to the same parameter value that we obtained from the good initial value. In this case, one may want
to choose the likelihood solution obtained from EM, SAGE, or the new algorithm instead of that from
CEMM, because it has a higher likelihood value than that of CEMM (See Figure 4 (b)). However,
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(a) Fitted densities using the good initial value

−10 −5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b) Fitted densities using the bad initial value

Figure 5: (a) Fitted densities using the good initial value ( “—” and “ - - -” represent the true density and fitted
density from all algorithms, respectively), (b) Fitted densities using the bad initial value ( “—”, “ · · · ” and “ - -
-” represent the true density, fitted density from CEMM, and fitted density from other algorithms, respectively)

as we can see in Figure 5 (b), the likelihood solution obtained from EM/SAGE/new algorithm does
not seem reasonable. This nearly singular solution is called a spurious solution (McLachlan and Peel,
2000) and EM-type algorithms quickly converge when they climb the likelihood toward singular or
spurious solutions (Biernacki and Chrétien, 2003). This spurious solution can occur with any op-
timization algorithm including EM-type algorithms we considered here, and it is difficult to judge
which solution is optimal in general.
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