• Title/Summary/Keyword: Missing Data Imputation

Search Result 145, Processing Time 0.022 seconds

The effect of missing levels of nesting in multilevel analysis

  • Park, Seho;Chung, Yujin
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.34.1-34.11
    • /
    • 2022
  • Multilevel analysis is an appropriate and powerful tool for analyzing hierarchical structure data widely applied from public health to genomic data. In practice, however, we may lose the information on multiple nesting levels in the multilevel analysis since data may fail to capture all levels of hierarchy, or the top or intermediate levels of hierarchy are ignored in the analysis. In this study, we consider a multilevel linear mixed effect model (LMM) with single imputation that can involve all data hierarchy levels in the presence of missing top or intermediate-level clusters. We evaluate and compare the performance of a multilevel LMM with single imputation with other models ignoring the data hierarchy or missing intermediate-level clusters. To this end, we applied a multilevel LMM with single imputation and other models to hierarchically structured cohort data with some intermediate levels missing and to simulated data with various cluster sizes and missing rates of intermediate-level clusters. A thorough simulation study demonstrated that an LMM with single imputation estimates fixed coefficients and variance components of a multilevel model more accurately than other models ignoring data hierarchy or missing clusters in terms of mean squared error and coverage probability. In particular, when models ignoring data hierarchy or missing clusters were applied, the variance components of random effects were overestimated. We observed similar results from the analysis of hierarchically structured cohort data.

Missing Imputation Methods Using the Spatial Variable in Sample Survey (표본조사에서 공간 변수(SPATIAL VARIABLE)를 이용한 결측 대체(MISSING IMPUTATION)의 효율성 비교)

  • Lee Jin-Hee;Kim Jin;Lee Kee-Jae
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.57-67
    • /
    • 2006
  • In sampling survey, nonresponse tend to occur inevitably. If we use information from respondents only, the estimates will be baised. To overcome this, various non-response imputation methods have been studied. If there are few auxiliary variables for replacing missing imputation or spatial autocorrelation exists between respondents and nonrespondents, spatial autocorrelation can be used for missing imputation. In this paper, we apply several nonresponse imputation methods including spatial imputation for the analysis of farm household economy data of the Gangwon-Do in 2002 as an example. We show that spatial imputation is more efficient than other methods through the numerical simulations.

Veri cation of Improving a Clustering Algorith for Microarray Data with Missing Values

  • Kim, Su-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.315-321
    • /
    • 2011
  • Gene expression microarray data often include multiple missing values. Most gene expression analysis (including gene clustering analysis); however, require a complete data matric as an input. In ordinary clustering methods, just a single missing value makes one abandon the whole data of a gene even if the rest of data for that gene was intact. The quality of analysis may decrease seriously as the missing rate is increased. In the opposite aspect, the imputation of missing value may result in an artifact that reduces the reliability of the analysis. To clarify this contradiction in microarray clustering analysis, this paper compared the accuracy of clustering with and without imputation over several microarray data having different missing rates. This paper also tested the clustering efficiency of several imputation methods including our propose algorithm. The results showed it is worthwhile to check the clustering result in this alternative way without any imputed data for the imperfect microarray data.

Comparison of binary data imputation methods in clinical trials (임상시험에서 이분형 결측치 처리방법의 비교연구)

  • An, Koosung;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.539-547
    • /
    • 2016
  • We discussed how to handle missing binary data clinical trials. Patterns of occurring missing data are discussed and introduce missing binary data imputation methods that include the modified method. A simulation is performed by modifying actual data for each method. The condition of this simulation is controlled by a response rate and a missing value rate. We list the simulation results for each method and discussed them at the end of this paper.

Comparison of Five Single Imputation Methods in General Missing Pattern

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.945-955
    • /
    • 2004
  • 'Complete-case analysis' is easy to carry out and it may be fine with small amount of missing data. However, this method is not recommended in general because the estimates are usually biased and not efficient. There are numerous alternatives to complete-case analysis. One alternative is the single imputation. Some of the most common single imputation methods are reviewed and the performances are compared by simulation studies.

  • PDF

Treatment of Missing Data by Decomposition and Voting with Ordinal Data

  • Chun, Young-M.;Son, Hong-K.;Chung, Sung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.585-598
    • /
    • 2007
  • It is so difficult to get complete data when we conduct a questionaire in actuality. And we get inefficient results if we analyze statistical tests with ignoring missing values. Therefore, we use imputation methods which evaluate quality of data. This study proposes a imputation method by decomposition and voting with ordinal data. First, data are sorted by each variable. After that, imputation methods are used by each decomposition level. And the last step is selection of values with voting. The proposed method is evaluated by accuracy and RMSE. In conclusion, missing values are related to each variable, median imputation method using decomposition and voting is powerful.

  • PDF

Imputation method for missing data based on measure of property (특성도를 이용한 결측치 대체방법)

  • Kim, Hyungju;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.463-473
    • /
    • 2017
  • How to handle missing data is a main issue in clinical trials. We impute missing data based on missing data that follows a mechanism according to the intention-to-treat rule. However, using the right imputation method for missing data is very important because this supposition is unclear. We suggest a new imputation method for missing data using agreement and maintenance introduced by Kang and Kim (1997). We give an example and adapt a Monte Carlo simulation to compare the performance between the established method and the suggested method.

Handling Incomplete Data Problem in Collaborative Filtering System

  • Noh, Hyun-ju;Kwak, Min-jung;Han, In-goo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.105-110
    • /
    • 2003
  • Collaborative filtering is one of the methodologies that are most widely used for recommendation system. It is based on a data matrix of each customer's preferences of products. There could be a lot of missing values in such preference. data matrix. This incomplete data is one of the reasons to deteriorate the accuracy of recommendation system. Multiple imputation method imputes m values for each missing value. It overcomes flaws of single imputation approaches through considering the uncertainty of missing values.. The objective of this paper is to suggest multiple imputation-based collaborative filtering approach for recommendation system to improve the accuracy in prediction performance. The experimental works show that the proposed approach provides better performance than the traditional Collaborative filtering approach, especially in case that there are a lot of missing values in dataset used for recommendation system.

  • PDF

Identification of Differentially Expressed Genes Using Tests Based on Multiple Imputations

  • Kim, Sang Cheol;Yu, Donghyeon
    • Quantitative Bio-Science
    • /
    • v.36 no.1
    • /
    • pp.23-31
    • /
    • 2017
  • Datasets from DNA microarray experiments, which are in the form of large matrices of expression levels of genes, often have missing values. However, the existing statistical methods including the principle components analysis (PCA) and Hotelling's t-test are not directly applicable for the datasets having missing values due to the fact that they assume the observed dataset is complete in general. Many methods have been proposed in previous literature to impute the missing in the observed data. Troyanskaya et al. [1] study the k-nearest neighbor (kNN) imputation, Kim et al. [2] propose the local least squares (LLS) method and Rubin [3] propose the multiple imputation (MI) for missing values. To identify differentially expressed genes, we propose a new testing procedure when the missing exists in the observed data. The proposed procedure uses the Stouffer's z-scores and combines the test results of individual imputed samples, which are dependent to each other. We numerically show that the proposed test procedure based on MI performs better than the existing test procedures based on single imputation (SI) by comparing their ROC curves. We apply the proposed method to analyzing a public microarray data.

Comparison of Shape Variability in Principal Component Biplot with Missing Values

  • Shin, Sang-Min;Choi, Yong-Seok;Lee, Nae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.1109-1116
    • /
    • 2008
  • Biplots are the multivariate analogue of scatter plots. They are useful for giving a graphical description of the data matrix, for detecting patterns and for displaying results found by more formal methods of analysis. Nevertheless, when some values are missing in data matrix, most biplots are not directly applicable. In particular, we are interested in the shape variability of principal component biplot which is the most popular in biplots with missing values. For this, we estimate the missing data using the EM algorithm and mean imputation according to missing rates. Even though we estimate missing values of biplot of incomplete data, we have different shapes of biplots according to the imputation methods and missing rates. Therefore we propose a RMS(root mean square) for measuring and comparing the shape variability between the original biplots and the estimated biplots.