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Abstract

`Complete-case analysis' is easy to carry out and it may be fine with 
small amount of missing data. However, this method is not recommended 
in general because the estimates are usually biased and not efficient. 
There are numerous alternatives to complete-case analysis. One 
alternative is the single imputation. Some of the most common single 
imputation methods are reviewed and the performances are compared by 
simulation studies. 

Keywords : Buck's method, Hot Deck Imputation, Stochastic regression 
imputation

1. Introduction

It is essential to analyze a data set with missing values in real field.  Most 

people discard the units that have missing values from the data set. This is called 

`complete-case analysis'.  It is easy to carry out and it may be fine with small 

amount of missing data. However, this method is not recommended in general 

because the estimates are usually biased and not efficient.  There are numerous 

alternatives to complete-case analysis.  

One alternative is to impute the missing values; that is, we replace the missing 

value with one single estimate. It is called `single imputation'. In this paper, some 

of the most common single imputation methods are reviewed and the performances 

are compared by simulation studies. 

Missing data can appear in a number of different patterns, and these patterns 

often reflect the study design used to collect the data.  Little and Rubin (2002) 
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discussed six missing patterns.  The general missing pattern among them is 

studied, which is that missingness of units and items is happened simultaneously 

in a data set like Swiss cheese.

Another issue researchers have to take into account when considering whether 

or not to impute missing data is how the missing data came to be missing.  

There are three types of missing-data mechanisms, `Missing Completely At 

Random(MCAR)',  `Missing At Random(MAR)' and `Non Ignorable(NI)' defined 

by Rubin(1976).  

Data are 'Missing Completely At Random'(MCAR) if the distribution of the 

missing data indicators does not depend on the data, either observed or missing, 

p(I∣Yobs,Ymis,∅)= p( I∣∅),                        (1)

where Yobs  denotes the observed data, Ymis  denotes the missing data, I is a 

matrix of indicators where an element is coded `1' if it is observed and `0' if it 

is missing, and ∅  denotes unknown parameters of I distribution.   If the 
distribution of the missing data does not depend on the missing values, but may 

be related to observed variables, then

p(I∣Yobs,Ymis,∅)= p(I∣Yobs,∅),                       (2)

and the missing-data mechanism is called `Missing At Random'(MAR). The 

equation (2) says that the missingness depends on the observed values. If the 

distribution of the observed data indicator depends on the missing values, Ymis, 

then the missing-data mechanism is 'Non Ignorable'(NI) missing.  MCAR and 

MAR missing mechanisms are considered in this paper.

2. Simulation Design

When doing this simulation study, we begin by generating multivariate normal 

data matrices.  To generate a multivariate normal data matrix, X, with 5 

variables and 200 observations from a multivariate normal distribution, 

MVN(μ,Σ), we follow these steps:

We can generate 200 by 5 data matrix, Y  from MVN(0,I), then  calculate 

matrix A, where A  is a Choleskey decomposition of Σ  such that it is an upper 

triangular matrix and the product of A
T
A  is Σ.  The data matrix, X  is equal to 

the product of Y  and A  matrix and plus mean matrix.
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X 200×5=Y 200×5A 5×5+ ( μ 1… μ5) 200×5 ,

where μ i  is a vector with 200 same values of i
th  variable mean.  In this study, 

the variance is 100 for all variables and covariances are all same. So we have 

same correlations between the variables. We tried three cases for the covariance 

with 25, 50, and 75.   The variance-covariance matrix and mean vector used in 

this simulation study are

Σ=
ꀌ

ꀘ

︳︳︳

ꀍ

ꀙ

︳︳︳

100 Cov
⋱

Cov 100

,   μ
T
=(10,15,20,25,30).

The general missing pattern in <Figure 1> is considered.  There are 100 

complete cases and 5 missing types  and 10% of 200  cases, 20 cases in each 

missing types.  For example, in type1, 20 cases are missing on X 2  and X 3.  In 

type2, 20 cases are missing on X 5.  See <Figure 1> for other types. The capital 

letter `M' in <Figure 1> indicates missing values.

 

X 1 X 2 X 3 X 4 X 5 Proportion Type

Complete cases 50%

M 10% Type1

M 10% Type2

M 10% Type3

M 10% Type4

M M 10% Type5

<Figure 1> General missing pattern considered in this study

MCAR and MAR missing mechanisms are considered.  If the generated random 

values are located on the missing  blocks in <Figure 1>, then the values are 

considered as missing values and this missing mechanism is MCAR.  

From the generated random values, keep 100 complete cases from the top and 

then the rest 100 cases are sorted according to X 1  by ascending.  The values 

located on the missing blocks are missing.  The missingness depends on the value 
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of X 1.  For example, the units have much larger values on X 1  tend to have 

missing type5.   This mechanism follows MAR.  

Data sets are generated 1000 times and 200 cases are generated per each data 

set.  For each data set, the missing values are imputed by each of the 5 single 

imputation(SI) methods and then compute sample mean, sample covariance matrix 

from the filled-in data.   We calculate average and variance of 1000 values for the 

sample means and each element for the covariance matrix.

3. Application of 5 single imputation methods

The following 5 single imputation methods, Unconditional Mean 

Imputation(Umean), Regression Imputation(Cmean), Buck's Method(Buck), 

Stochastic Regression Imputation(Cdraw), and  Nearest Neighbor Hot Deck 

Imputation are compared when we have a general missing pattern in <Figure 1>.

Let's review these methods briefly as they are applied in our simulated data.  

`Unconditional Mean Imputation(Umean)' is that all missing values on Xj  are 

replaced by the average of all recorded values on Xj.   In regression 

imputation(Cmean), we need the following regressions to impute missing values in 

<Figure 1>.

   ‧ Regression of X 2, X 3  on X 1, X 4, X 5  for type1 .

   ‧ Regression of X 5  on X 1, X 2, X 3, X 4  for type2 .

   ‧ Regression of X 3  on X 1, X 2, X 4, X 5  for type3.

   ‧ Regression of X 4  on X 1, X 2, X 3, X 5  for type4.

   ‧ Regression of X 2, X 4  on X 1, X 3, X 4  for type5.

We will estimate those regression coefficients based on 100 complete cases and 

the missing values on the i th  case are replaced by the predicted values given the 

corresponding regression coefficients and the observed values on the i
th  case. 

Buck's method is same as the regression imputation except estimating variance of 

the variables.  The adjusted estimates forV(Xj)  by Buck(1960) is the following:

V̂( Xj)=a jj+
λ j
c jj
,

where a jj  is  sample variance of the  variable from filled-in data, λ j  is  
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proportion of missing values on Xj, c jj  is the j
th  diagonal element of S -1, and 

S  is the sample variance-covariance matrix for complete cases.  In our simulated 

data, λ 1=0, λ2=0.2, λ3=0.2, λ4=0.1, and λ 5=0.2. 

`Stochastic Regression Imputation'(Cdraw) is that the missing values are 

replaced by the  regression imputation value plus an  error term.  For example of 

Type 1, 

X̂ mis, 2 = a 0+a 1X 1+a 4X 4+a 5X 5+e 2,

X̂ mis, 3 = b 0+b 1X 1+b 4X 4+b 5X 5+e 3,

where X̂ mis, 2
 and X̂ mis, 3

 are imputed values for missing values onX 2  andX 3  in 

Type 1, aand b's are regression coefficients of the regression ofX 2, X 3  on X 1, 

X 4, X 5  based on the complete cases,  and  (e 2,e 3)'  are random draws from 

MVN(0, Σ̂ 23 )  with Σ̂ 23  is a sample variance-covariance matrix of residuals from 

the regression of X 2, X 3  on X 1, X 4, X 5.

We can choose imputed values that come from responding units close to the 

unit with the missing value based on the value of 5 variables.  This procedure is 

`Nearest Neighbor Hot Deck'.  Euclidean metric instead of Mahalanobis metric is 

used to measure distance between units in this study because the 5 variables have 

same variances.  

4.  Simulation Results 

The 5 single imputation methods are compared for the estimates of mean and 

variance-covariance matrix with 5 random variables.   Bias, relative variance, and 

MSE(mean square error) are examined for each estimates.  The `Complete' in all 

Tables in this section indicates `Complete Data' with no missing values.  There 

are 200 fully observed units in `Complete Data'set.  It is natural that the 

performance of `Complete' are always better than other imputation methods.

4.1. The results for the mean under MCAR

Table 1 shows biases of estimates for the Mean under MCAR. The values are 

the average of `Ave(∣Bias( Xj)∣)' for all incomplete variables X 2, X 3, X 4, 

X 5. Ave(∣Bias( Xj)∣) is the average of 1000 values of ∣Bias( Xj)∣ based 

on 1000 data sets. ∣Bias( Xj)∣ is computed for each data set. ∣Bias( Xj)∣ is 
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an absolute value of (sample mean of Xj - true mean of Xj) for 200 

observations from the imputed data set. 'Cdraw' has the smallest bias and other 

methods are not bad. Under MCAR, all methods provide unbiased estimates for 

the mean. The values seem to vary according to the covariances. If there exists 

higher covariances between variables, we can expect better imputation. 

Table 1: Biases of estimates for the Mean under MCAR

Covariance

Method 25 50 75

Complete

Umean

Cmean, Buck

Cdraw

N. HotDeck

0.0081

0.0185

0.0171

0.0146

0.0165

0.0067

0.0160

0.0127

0.0106

0.0133

0.0060

0.0123

0.0074

0.0070

0.0115

       Biases= 1
4 ∑

5

j=2
Ave(∣Bias( Xj)∣)

Table 2 shows relative variances of estimates for the means from the imputed 

data set with respect to variances for the means from the 'Complete Data' under 

MCAR. Var( Xj) imp is the variance of 1000 sample means for Xj from the 1000 

imputed data sets. Var( Xj) comp is the variance of 1000 sample mean for Xj from 

the 1000 'Complete Data' sets with 200 fully observed units. 'Cmean, & Buck' 

has smaller variances for the mean estimates. The mean estimates from 'Cmean' 

imputation are more efficient. The other methods are not bad in higher 

covariances except 'Umean'.

Table 2: Relative Variance of estimates for the Mean under MCAR

Covariance

Method 25 50 75

Umean

Cmean, Buck

Cdraw

N. HotDeck

1.1964

1.1963

1.3365

1.3438

1.1937

1.1305

1.229

1.2502

1.1996

1.0623

1.1133

1.1325

   R.  Var= 1
4 ∑

5

j=2
Var(Xj) imp / Var(Xj) comp

Table 3 shows MSE(mean square error) of the mean estimates under MCAR. 

Var( Xj) +Ave(Bias( Xj))
2 is (the variance of 1000 Xj + the average of 1000 
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bias 2 for Xj). 'Cmean & Buck' has the smallest value of MSE for the means.

Table 3: MSE of estimates for the Mean under MCAR

Covariance

Method 25 50 75

Complete

Umean

Cmean, Buck

Cdraw

N. HotDeck

0.4992

0.5968

0.5962

0.6663

0.6689

0.505

0.5981

0.5661

0.6159

0.6257

0.5019

0.6024

0.5333

0.5592

0.5685

MSE=
1
4 ∑

5

j=2
Var(Xj )+Ave(Bias(Xj ))

2

4.2. The results for the Variance-Covariance matrix under MCAR

The parameters in variance-covariance matrix are grouped into 3 parts like 

Figure 2. `Var' is a part for the variances for the incomplete variables X 2, X 3, 

X 4, X 5. The covariances can be divided by two parts because X 1 is fully 

observed. 'Cov1' is a part for the covariances between X 1 and other incomplete 

variables. 'Cov2' is a part for the covariances among incomplete variables.

Table 4 shows biases of estimates for the variance-covariance matrix under 

MCAR. The values of `Var', 1
4 ∑

5

j=2
Ave(∣Bias( s jj)∣), are the average of 4 

values of  `Ave(∣Bias( s jj)∣)' for s 22,s 33,s 44,s 55.  `Ave(∣Bias( s jj)∣)' is the 

average of 1000 values of ∣Bias( s jj)∣computed from 1000 data sets.

<Figure 2> 3 parameter groups in var-covariance matrix
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∣Bias(s jj)∣ is an absolute value of (sample variance of Xj - true variance of 

Xj) for 200 observations from the imputed data set.   The values of `Cov1' and 

`Cov2' are defined as similarly as  those in `Var'.

`Cdraw' method has  the smallest bias for all parameters in variance-covariance 

matrix. Umean is the worst for these parameters and Cmean is not good for 

`Var'. The parameters in variance-covariance matrix are underestimated when we 

do 'Buck' method (Little and Rubin, 2002). This is not shown clearly in Table 1 

because we use absolute value of bias. 

Table 4: Biases for Var-Covariance Matrix under MCAR

Cov 25 50 75

Parameter Var Cov1 Cov2 Var Cov1 Cov2 Var Cov1 Cov2

Complete

Umean

Cmean

Buck

Cdraw

N. HotDeck

0.138

17.59

14.66

0.290

0.129

0.518

0.266

4.201

0.205

0.205

0.186

0.309

0.166

7.482

0.452

0.452

0.231

0.749

0.183

17.47

10.24

0.189

0.231

0.775

0.249

8.592

0.193

0.193

0.161

0.542

0.284

14.93

0.488

0.488

0.256

1.068

0.262

17.39

5.161

0.138

0.234

0.777

0.185

13.01

0.142

0.142

0.118

0.549

0.314

22.40

0.336

0.336

0.246

1.076

  Var :
1
4 ∑

5

j=2
Ave(∣Bias(s jj )∣)          Cov1:

1
4 ∑

5

j=2
Ave(∣Bias(s 1j )∣)

  Cov2:
1
6 ∑

4

i=2
∑
5

j> i
Ave(∣Bias( s ij )∣)  

Table 5 shows relative variances of estimates for the variance-covariance matrix 

from the imputed data set with respect to variances for the variance-covariance 

matrix from the `Complete Data' under MCAR. Var(s ij) imp is the variance of 1000 

sample variance of s ij from the 1000 imputed data sets. Var(s ij) comp is calculated 

similarly  from the 1000 `Complete Data' sets with 200 fully observed units.  

Table 2 shows that `Cmean' and `Buck' methods have less variation to estimate 

variance covariance matrix and their variations are close to true ones, but the 

values of `Umean' method are smaller than true variation. 
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Table 5: Relative Variances for Var-Covariance Matrix under MCAR

Cov 25 50 75

Parameter Var Cov1 Cov2 Var Cov1 Cov2 Var Cov1 Cov2

Umean

Cmean

Buck

Cdraw

N. HotDeck

0.930

0.931

1.229

1.417

1.367

0.841

1.206

1.206

1.342

1.268

0.714

1.379

1.379

1.693

1.580

0.841

1.057

1.204

1.362

1.309

0.835

1.124

1.124

1.212

1.179

0.722

1.235

1.235

1.421

1.356

0.841

1.093

1.132

1.228

1.206

0.828

1.053

1.503

1.094

1.076

0.719

1.101

1.101

1.180

1.161

Var :
1
4 ∑

5

j=2
Var(s jj) imp/Var( s jj) comp

Cov1:
1
4 ∑

5

j=2
Var(s 1j) imp/Var(s 1j) comp

Cov2 :
1
6 ∑

4

i=2
∑
5

j> i
Var(s ij) imp/Var( s ij) comp

In Table 6,  MSE(mean square error) of the variance-covariance matrix  under 

MCAR. Var(s ij) +Ave(Bias(s ij))
2 is (the variance of 1000 s ij + the average of 

1000 bias 2 for s ij). Table 6 shows that 'Buck' method have smaller MSE to 

estimate variance-covariance matrix and 'Umean' method is getting worse when 

larger covariances exist because 'Umean' imputation does not consider the 

associations between variables.

Table 6: MSE for Var-Covariance Matrix under MCAR

Cov 25 50 75

Parameter Var Cov1 Cov2 Var Cov1 Cov2 Var Cov1 Cov2

Complete

Umean

Cmean

Buck

Cdraw

N. HotDeck

103.11

412.92

323.82

127.14

146.73

141.66

55.22

65.05

66.63

66.63

74.24

69.79

53.54

94.19

74.03

74.03

90.59

85.13

104.17

410.71

221.63

125.66

142.33

137.33

65.99

133.39

74.20

74.20

80.05

78.11

64.51

269.5

79.90

79.90

91.66

88.62

106.09

409.81

144.28

120.10

130.47

128.64

82.77

248.3

87.12

87.12

90.54

89.31

83.25

561.8

91.72

91.72

98.19

97.74

Var :
1
4 ∑

5

j=2
Var(s jj )+(Bias(s jj ))

2

Cov1:
1
4 ∑

5

j=2
Var(s 1j )+(Bias(s 1j ))

2

Cov2 :
1
6 ∑

4

i=2
∑
5

j> i
Var( s ij )+(Bias( s ij ))

2

4.3  Comparison between MCAR and MAR

The simulation results for just `Cov=75' are shown because the results do not 
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much differ for 'Cov=25' and 'Cov=50'. All results of comparison MSE between 

MCAR and MAR in Table 7 and 8 show that Umean method does not work for 

all parameters and other methods do work like MCAR for all parameters. 'Buck' 

method is the most preferred one like MCAR for all parameters when we examine 

MSE.

Table 7: Comparison between MCAR and MAR for MSE of the Mean

Method MCAR, Cov=75 MAR, Cov=75

Complete

Umean

Cmean, Buck

Cdraw

N. HotDeck

0.5019

0.6024

0.5333

0.5592

0.5685

0.5019

1.4648

0.5440

0.5721

0.5876

MSE :
1
4 ∑

5

j=2
Var(Xj)+Ave(Bias(Xj))

2

Table 8: Comparison between MCAR and MAR 

         for MSE of the Var-covariance matrix

MCAR, Cov=75 MAR, Cov=75

Parameter Var Cov1 Cov2 Var Cov1 Cov2

Complete

Umean

Cmean

Buck

Cdraw

N. HotDeck

106.09

409.00

144.28

120.10

130.47

128.64

82.77

248.06

87.12

87.12

90.54

89.31

83.25

625.15

91.72

91.72

98.19

97.74

106.09

613.12

148.93

124.86

136.75

138.79

82.77

489.94

90.27

90.27

94.04

94.31

83.25

832.48

94.77

94.77

101.75

102.96

Var :
1
4 ∑

5

j=2
Var(s jj )+(Bias(s jj ))

2

Cov1:
1
4 ∑

5

j=2
Var(s 1j )+(Bias(s 1j ))

2

Cov2 :
1
6 ∑

4

i=2
∑
5

j> i
Var( s ij )+(Bias( s ij ))

2

5. Conclusion 

When we consider just MSE of the estimates, the 'Buck' method is the most 

preferred one for all cases and `Cdraw' and `N. HotDeck' are not bad in general. 
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If we are interested in just bias of the estimates, `Cdraw' is the most preferred 

one. We can conclude the simulation results for each parameter as following:

(a) Mean: All methods seem to be appropriate. `Cdraw' has less bias to 

estimate mean vectors. `Cmean(Buck)' is the preferred method when we 

consider the variation and MSE. Correlations between variables are getting 

larger, the performance of imputation is getting better.

(b) Variances: `Umean' and `Cmean' are not appropriate to estimate variances 

because these two methods underestimate variances of the variables by too 

large an amount. `Cdraw' is the preferred method when we are interested in 

the point estimates of variances. `Buck' method is the most preferred one 

when we consider the variation and MSE, but `Buck' method still tends to 

underestimate variances of the variables.

(c) Covariances: `Umean' is not appropriate to estimate covariances. `Cdraw' 

can be the best on the biases to estimate covariances and `Cmean(Buck)' 

tends to underestimate the covariances between two variables missing 

together. `Buck' method is the most preferred one when we consider the 

variation and MSE. 

`Buck' method is generally preferred among single imputation methods to 

estimate mean and covariance matrix when we assume the missing variables have 

linear regression on the observed variables. If we consider just biases, `Cdraw' 

can be the best among single imputation methods especially when many cases are 

missing together on more than two variables. `Cdraw' and `N. HotDeck' are not 

bad in general. We can use `Umean' if the point estimation of mean are our 

purpose and there are strong evidence of MCAR. Otherwise, `Umean‘ method is 

not recommended to use.  `Cmean’ is not a good choice if you are interested in 

the estimation of variances of the variables or correlations between the variables.
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