• Title/Summary/Keyword: Missile Impact

Search Result 75, Processing Time 0.022 seconds

Penetration resistance of steel fiber reinforced concrete containment structure to high velocity projectile

  • Teng, Tso-Liang;Chu, Yi-An;Shen, Bor-Cherng
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.509-524
    • /
    • 2008
  • Containment structures not only are leak-tight barriers, but also may be subjected to impacts caused by tornado-generated projectiles, aircraft crashes or the fragments of missile warhead. This paper presents the results of an experimental study of the impact resistance of steel fiber-reinforced concrete against 45 g projectiles at velocity around 2500 m/s. An explosively formed projectile (EFP) was designed to generate an equivalent missile fragment. The formation and velocity of EFP are measured by flash x-ray. A switch made of double-layered thin copper sheets controlled the exposure time of each flash x-ray. The influence of the fiber volume fraction on the crater diameter of concrete slab and the residual velocity of the projectile were studied. The residual velocity of the projectile decreased as the fiber volume fractions increased. In this work, the residual velocity of the projectile was to 44% that of plain concrete when the fiber volume fraction exceeded 1.5%. Based on the present finding, steel fiber reinforced concrete with the fiber volume fraction exceeding 1.5% appear to be more efficient in protection against high velocity fragment impact.

Estimation of Safety Area for Intercept Debris by Using Modeling and Simulation (탄도탄 요격시험 안전구역 산출을 위한 모델링 및 시뮬레이션)

  • Lee, Sungkyun;Go, Jinyong;Han, Yongsu;Kim, Changhwan
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • The ballistic missile threat continues to increase with the proliferation of missile technology. In response to this threat, many kinds of interceptors have been emphasized over the years. For development of interceptor, systematic flight tests are essential. Flight tests provide valuable data that can be used to verify performance and confirm the technological progress of ballistic missile defense system including interceptor. However, during flight tests, civilians near the test region could be risk due to a lot of intercept debris. For this reason, reliable estimate of safety area for the flight tests should be preceded. In this study, prediction of safety area is performed through modeling and simulation. Firstly, behaviors of ballistic missile and interceptor are simulated for those entire phase including interception to obtain the relative intercept velocity and the relative impact angle. By using obtained data of kinetic energy, the fragment ejection velocity is calculated and fragment trajectories are simulated by considering drag, gravity and wind effects. Based on the debris field formation and hazard evaluation of debris, final safety area is calculated.

GUIDANCE LAW FOR IMPACT TIME AND ANGLE CONTROL WITH CONTROL COMMAND RESHAPING

  • LEE, JIN-IK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.271-287
    • /
    • 2015
  • In this article, a more generalized form of the impact time and angle control guidance law is proposed based on the linear quadratic optimal control methodology. For the purpose on controlling an additional constraint such as the impact time, we introduce an additional state variable that is defined to be the jerk (acceleration rate). Additionally, in order to provide an additional degree of freedom in choosing the guidance gains, the performance index that minimizes the control energy weighted by an arbitrary order of time-to-go is considered in this work. First, the generalized form of the impact angle control guidance law with an additional term which is used for the impact time control is derived. And then, we also determine the additional term in order to achieve the desired impact time. Through numbers of numerical simulations, we investigate the superiority of the proposed guidance law compared to previous guidance laws. In addition, a salvo attack scenario with multiple missile systems is also demonstrated.

A Study on the Efficient Operation of Harpoon Missile Maintenance Personnel Using Simulation Model (시뮬레이션을 활용한 효율적인 하푼 유도탄 정비인력 운영 연구)

  • Choi, Youngjae;Ma, Jungmok
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.65-73
    • /
    • 2021
  • The maintenance of the guided missiles typically requires the efficient management of spare parts and maintenance time. This study analyzed the impact of the maintenance time on operational availability. This study classifies the maintenance team with consideration of the skill level of the Harpoon guided missile maintenance and the goal is to analyze the impact on the operational availability with the skill levels quantitatively. Based on the real maintenance data of Harpoon guided missiles, a simulation model is constructed and analyzed. The analysis of the simulation result shows the trade-off between the maintenance time and operational availability. It is expected that the simulation model can help the maintenance policies of guided missiles.

Modeling interply debonding in laminated architectural glass subject to low velocity impact

  • Flocker, F.W.;Dharani, L.R.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.485-496
    • /
    • 1998
  • Standard finite element wave propagation codes are useful for determining stresses caused by the impact of one body with another; however, their applicability to a laminated system such as architectural laminated glass is limited because the important interlayer delamination process caused by impact loading is difficult to model. This paper presents a method that allows traditional wave propagation codes to model the interlayer debonding of laminated architectural glass subject to low velocity, small missile impact such as that which occurs in severe windstorms. The method can be extended to any multilayered medium with adhesive bonding between the layers. Computational results of concern to architectural glazing designers are presented.

A simplified procedure to incorporate soil non-linearity in missile penetration problems

  • Siddiqui, N.A.;Kumar, S.;Khan, M.A.;Abbas, H.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.249-262
    • /
    • 2006
  • In this paper, a simplified mathematical procedure is presented to incorporate nonlinearity in soil material to predict the deceleration time history, penetration depth and other relevant parameters for normal impact of missiles into soil targets. Numerical method is employed for these predictions. The results of the study are compared with experimental observations and predictions available in the literature. A good agreement is found with experimental observations and an improvement is observed with existing predictions. A comparison is also made with linear soil model. Some parametric studies are also carried out to obtain the results of practical interest.

The Characteristics of Open-loop Trajectory and Time-to-go Estimation for Impact Angle Control Optimal Guidance through Inverse Optimal Problem (역최적 문제를 통한 충돌각 제어 최적유도법칙의 개루프 비행궤적 특성 및 Time-to-go 예측)

  • Lee, Yong-In;Lee, Jin-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.5-12
    • /
    • 2008
  • This paper presents the features of an impact angle constrained open-loop optimal trajectory which is given by a function of initial conditions and optimal guidance gains. Using missile motion described by linearized kinematic equations and a proper form of performance index, an inverse optimal problem is suggested to investigate the gains related to the performance index. The flight trajectory and time-to-go can be shaped in terms of the optimal guidance gains. The results are evaluated by 3-DOF simulation.

Research on the impact effect of AP1000 shield building subjected to large commercial aircraft

  • Wang, Xiuqing;Wang, Dayang;Zhang, Yongshan;Wu, Chenqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1686-1704
    • /
    • 2021
  • This study addresses the numerical simulation of the shield building of an AP1000 nuclear power plant (NPP) subjected to a large commercial aircraft impact. First, a simplified finite element model (F.E. model) of the large commercial Boeing 737 MAX 8 aircraft is established. The F.E. model of the AP1000 shield building is constructed, which is a reasonably simplified reinforced concrete structure. The effectiveness of both F.E. models is verified by the classical Riera method and the impact test of a 1/7.5 scaled GE-J79 engine model. Then, based on the verified F.E. models, the entire impact process of the aircraft on the shield building is simulated by the missile-target interaction method (coupled method) and by the ANSYS/LS-DYNA software, which is at different initial impact velocities and impact heights. Finally, the laws and characteristics of the aircraft impact force, residual velocity, kinetic energy, concrete damage, axial reinforcement stress, and perforated size are analyzed in detail. The results show that all of them increase with the addition to the initial impact velocity. The first four are not very sensitive to the impact height. The engine impact mainly contributes to the peak impact force, and the peak impact force is six times higher than that in the first stage. With increasing initial impact velocity, the maximum aircraft impact force rises linearly. The range of the tension and pressure of the reinforcement axial stress changes with the impact height. The perforated size increases with increasing impact height. The radial perforation area is almost insensitive to the initial impact velocity and impact height. The research of this study can provide help for engineers in designing AP1000 shield buildings.

Effect of Reinforcement Ratio and Impact Velocity on Local Damage of RC Slabs (철근비 및 충돌속도가 RC 슬래브의 국부손상에 미치는 효과)

  • Choi, Hyun;Chung, Chul Hun;Yoo, Hyeon Kyeong;Kim, Sang Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.311-321
    • /
    • 2011
  • To analysis the effect of reinforcement ratio and impact velocity on local damage, a series of impact analyses are performed to predict local effects. According to these results, the reinforcement ratio has no effect on the penetration depth and perforation thickness, but notable change to the scabbing area were observed. The higher the missile velocity becomes, the greater the degree of local damage to the reinforced concrete slabs is. Analysis results will be useful in the impact-resistance design of containment buildings and structures.

Contact Force and Response Analysis of Vibration Isolated Systems (진동절연 시스템의 충격력과 충격응답 해석)

  • 김준호;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3185-3194
    • /
    • 1994
  • In this study, an impact model and impact response analysis method was suggested for the impacts between arbitrary shaped bodies. Unlike the impacts between geometrically simple structures, there is no rules to analyze the impacts between general elastic structures First of all, it has been attempted to explain the impoot between arbitrary elastic structures as the elastic deformation of a virtual contact spring in the vicinity of contact points. The contact stiffness and the exponent are determined from the Hertz's contact theory and F. E. analysis. In order to evaluate the validities and limitations of the proposed methods, an impact tester and the miniature of container, missile and isolators have been provided and tested experimentally. All the experiments were performed with various impact conditions. The results obtained by the proposed methods were directly compared with the measured values in terms of maximum contract force, contact duration, the shape of contact force and the structure responses. The computed contact force and responses, using this proposed methods, were very close to the measured results, unless any plastic deformations were presented.