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ABSTRACT. In this article, a more generalized form of the impact time and angle control guid-

ance law is proposed based on the linear quadratic optimal control methodology. For the pur-

pose on controlling an additional constraint such as the impact time, we introduce an additional

state variable that is defined to be the jerk (acceleration rate). Additionally, in order to provide

an additional degree of freedom in choosing the guidance gains, the performance index that

minimizes the control energy weighted by an arbitrary order of time-to-go is considered in this

work. First, the generalized form of the impact angle control guidance law with an additional

term which is used for the impact time control is derived. And then, we also determine the

additional term in order to achieve the desired impact time. Through numbers of numerical

simulations, we investigate the superiority of the proposed guidance law compared to previ-

ous guidance laws. In addition, a salvo attack scenario with multiple missile systems is also

demonstrated.

1. INTRODUCTION

The guided flight vehicle systems such as the missile systems and the unmanned aerial ve-

hicle(UAV) systems have been designed to intercept a target or to pass a numbers of waypoints

in order to spy on the movement of the enemy. Also, it is well-understood that the primary

goal of the guided weapon systems is to effectively intercept a designated target. To this end,

a guidance law to carry the missile systems to a target is needed, and proportional navigation

guidance(PNG) or optimal guidance law(OGL) have been received a great attention for the

terminal homing guidance laws. Not only there have been extensive studies on these guidance

laws but also these guidance laws have been successfully applied to various missile systems

during the course of several years [1, 2]. Also, the guidance laws providing the terminal con-

straints on the flight path angle as well as the interception have been also studied by using the

concept of the optimal control and the biased PNG in [3, 4, 5]. These days, those guidance laws

are accepted for the effective terminal guidance laws of the anti-tank or -ship systems because

of their essential properties.

Meanwhile, in general, the air density is varied according to change of the operating alti-

tude. Accordingly, the drag force and the efficient of the control energy can be different in that
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case. Additionally, in the end of the homing phase, the employing guidance laws should appro-

priately produce its guidance command in order to achieve the main goal of the guidance law

even though they sacrifice some control energies. Most established guidance laws have been

devised from the control energy minimization standpoint, while a guidance law that allows us

to distribute the control effort evenly during the entire flight has also been studied in [6] from

this perspective.

In addition, the survivability enhancement has become an important requirement of the mis-

sile systems because the defense systems have been grown recently. To minimize the reflection

of the radar signal or the heat energy such as the stealth technique is one of effective ways to

enhance the survivability of the missile against the defense systems because such technique

can significantly reduce the chances of detection from the tracking radar.

From the flight control standpoint, in order to enhance the survivability against the defense

systems, a single vehicle capable of evasive maneuver has been also studied. However, this

approach generally spends a lot of the control energies as well as makes the achievement of

the intercept so difficult in the vicinity of a target because the evasive maneuver may try to

increase the miss distance in that time [7]. In another approach, using a group of missile

systems is also considered. This strategy can increase the survivability by means of saturating

the resource of the defense systems. In this approach, although a multiple missile systems

simultaneously attack a single target, each missile system is implicitly working to achieve the

goal. Additionally, this approach cannot guarantee the improving of sufficient survivability,

when the limited numbers of the missile systems are engaged.

In general, a high value target such as the battle ship has a strong defense system called

the close in weapon system(CIWS) that can fire a several thousands of bullets within just one

second. However, due to the limitation of install space, CIWS cannot defense all direction

in general. Therefore, even though the battle ship is protected by a strong defense system, it

can be neutralized by means of simultaneous attack with different approaching angles using a

group of missile systems.

Based on this idea, in most recent, a new guidance law neutralizing the resource of the

defense system has been suggested. In [8], Jeon et. al. have devised the guidance law to

control the terminal impact time in the operations of the multiple missile systems, which is

called the impact time control guidance(ITCG). ITCG is consists of two command terms: the

first term is well-known PNG command to minimize the miss distance and the second term is

proposed to control the flight time of the missile. In addition, Lee et. al. have proposed the

guidance law to control the impact time and the impact angle simultaneously, called impact

time and angle control guidance(ITACG, [9]). In this paper, the authors have introduced an

additional state variable such as jerk to provide additional degree of freedom. In reference

[10], a homing guidance law to control the impact time for multiple missile systems was newly

proposed. Unlike the previous works related this issue, the concept of an explicit cooperation

has been taken in this paper to achieve the main goal.

In the previous version of ITACG, it is not allowed to adjust its guidance gain properly. As

mentioned before, this is not a desirable structure for shaping the guidance command in order to

take into account the efficiency of the control energy. Accordingly, in this paper, we propose an
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extended version of ITACG that can provide the desired impact time and angle in conjunction

with capable of shaping its guidance command appropriately. To this end, in the derivation

process of ITACG, we use a different cost function that can provide the additional degree of

freedom in shaping the guidance command. Namely, the optimal impact angle control is first

derived using the concept of jerk and the performance index weighted by the time-to-go. And

then, based on this result, a more general form of ITACG is suggested in this paper.

This paper is structured in five sections as follows. In Section 2, we first review of IACG.

Then, in Section 3, the proposed guidance law is discussed. The performance of the proposed

guidance law is shown in Section 4. Finally, we conclude our study.

2. CONVENTIONAL IMPACT ANGLE CONTROL LAW

In this section, we review on the conventional impact angle control guidance law for the

readers who are not familiar with that concept of the guidance law. Let us consider a planar

homing engagement scenario as shown in Fig. 1. We assume that the missile flies with a

constant speed VM and the target is almost stationary. In this figure, the position of the missile

is expressed by the notation as (X,Y ) in the inertial frame and the variable γM denotes the

flight path angle. The X-axis is defined in a way that leads to a small value of the terminal

flight path angle. And, aM represents the missile acceleration command to change the velocity

vector, which is normal to VM as shown in Fig. 1. Other variables in this engagement geometry

are self-explanatory.

FIGURE 1. Guidance geometry

In this homing geometry, the equations of motion for the homing problem can be written by

dY/dt = VM sin γM (2.1)

dX/dt = VM cos γM (2.2)

dγM /dt = aM /VM (2.3)
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where t is the flight time. The boundary conditions for the impact angle control are given as

follows:

X(t0) = X0, Y (t0) = Y0, γM (t0) = γM,0

X(tf ) = Xf , Y (tf ) = Yf , γM (tf ) = γ
M,f

In these descriptions, the subscript 0 and f denote the initial time and the terminal time, re-

spectively. Note that the desired value of the flight path angle at the terminal time is prescribed

before the engagement in this problem. As stated in the introduction, in this paper, we derive

more general form of ITACG by extending the work on [9]. Here, the generalization means

that the guidance law can provide more options of choosing guidance gains in order to achieve

the specified guidance objective. In this section, we consider a generalized impact angle first.

And then, by introducing the jerk term, a new impact angle control guidance law capable of

shaping its guidance gains as well as providing additional degree of freedom in controlling the

impact time. Based on this result, we finally derive the generalized guidance law to control

both impact angle and time. Compared to [9], the proposed guidance law in here can also

provide addition options for choosing its guidance gain to the designer.

In order to derive the generalized impact angle control, we suppose the optimal control

problem with the following cost function [6]:

Find time-to-go weighted aM (t) which minimizes

J =
1

2

∫ tf

t0

1

tNgo
aM (s)2ds (2.4)

subject to Eqs. (2.1) to (2.3). The reason why we use the performance index as shown in Eq.

(2.4) is to reduce the demanded guidance command as the missile approaches the target, which

is desirable from the standpoint of saving some operational margin to cope with unexpected

situation near the target. It is noted that this cost function is often used to design the guidance

law because it can provide an effective guidance law in the vicinity of the target.

Hereafter, we assume a small value of γM which is allowed by means of choosing a proper

reference frame. Then, we can linearize Eqs. (2.1) to (2.3) as[
y′
γ′
M

]
=

[
0 1
0 0

] [
y
γM

]
+

[
0
1

]
a (2.5)

where y denotes the lateral separation in the linearized kinematics. The prime ′ represents

the derivatives of variables with respect to x which denotes the non-dimensionalized relative

range between the missile and the target in the linearized formulation. By introducing this

transformation, in this paper, each variable is non-dimensionalized to relieve the complexity in

the derivation of the proposed guidance law as

x = X/Lf , y = Y/Lf

a = aM /(VM/tf ), τ = t/tf
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where Lf (≡ VM tf ) denotes the total length of flight. a is a non-dimensionalization of aM .

Also, the boundary conditions can be now expressed as

y(x0) = y0, γM (x0) = γM,0

y(xf ) = yf , γM (xf ) = γf

In a similar way, the cost function corresponding to Eq. (2.4) is rewritten as

J̄1 =
1

2

∫ xf

x0

1

(xf − s)N
a(s)2ds. (2.6)

The final solution of this optimal guidance problem, known as the time-to-go weighted op-

timal guidance law in the non-dimensionalized form can be determined as follows:

a =
(N + 2)(N + 3)ygo

x2go
− 2(N + 2)γM

xgo
− (N + 1)(N + 2)γf

xgo
(2.7)

where ygo = yf − y, xgo = xf − x. Note that this guidance law cannot satisfy the desired

impact time explicitly. This guidance law has an interesting feature the command as shown in

Eq. (2.7) is identical to the conventional impact angle control guidance law with the gains of[
6 −4 −2

]
in the case of N = 0.

3. GENERALIZED IACG AND ITACG LAWS

Hereafter, we discuss the generalized versions of IACG and ITACG laws. To provide an

additional degree of freedom for the impact time control, we introduce an additional state

variable which is the rate of the acceleration command (i.e., jerk) and is defined to be the

control input.

daM /dt = G(t) (3.1)

where G(t) = g(t) + g0. And, the parameter g0 is defined to be an arbitrary constant while

g(t) is given by a function of time. In that case, additional initial condition is needed as

aM (t0) = aM,0 (3.2)

where aM,0 represents the initial acceleration command. Then, let us look at the following

optimal guidance problem in consideration on the impact angle constraint: find g(t) which

minimizes the following performance index.

J2 =
1

2

∫ tf

t0

1

(tf − s)N
g(s)2ds. (3.3)

subject to Eqs. (2.1) through (2.3) and Eq. (3.1).

Note that the impact time control guidance law generally takes a detour at the initial time to

enlarge the flight time as much as the desired value. The reason why we introduce this perfor-

mance index is to takes a detour as fast as possible in the beginning of the homing phase. Then,

the obtained guidance law can produce a small acceleration command in the terminal phase.

We can predict that the obtained guidance law may generate a huge acceleration command as

the parameterN increases. Additionally, note that the performance index as shown in Eq. (3.3)
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is associated with g(t) only. Hereafter, we first derive the optimal impact angle control law that

minimizes the quadratic performance index with a free design parameter g0. After that, we

determine g0 to satisfy the impact time constraint also, i.e., tf = td where td represents a pre-

scribed impact time. The issue on how to satisfy the impact time will be discussed in the end of

this section. Let the control command with the non-dimensionalized input variable be defined

as [9]

Ξ = η + η0 (3.4)

where the parameters η and η0 are new non-dimensionalized variables, which are defined as

Ξ = G/(VM/t
2
f ), η = g/(VM/t

2
f ) and η0 = g0/(VM/t

2
f ), respectively. In addition, the initial

condition of the acceleration is given by a(x0) = a0 in the non-dimensional form. In a similar

way as shown in Eq. (2.5), under the assumption of small γM , linearizing Eqs. (2.1) to (2.3)

with Eq. (3.1) yields the augmented governing equation as follows:

ξ′ = Aξ +BΞ (3.5)

where ξ =
[
y γM a

]T
. The matrix A and B are given by

A =

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦ , B =

⎡
⎣ 0

0
1

⎤
⎦ . (3.6)

3.1. Derivation of generalized IACG and ITACG. To obtain the control input, as shown in

Eq. (3.4), that minimizes the considering performance index as given in Eq. (3.3) subject to

Eq. (3.5), we define the Hamiltonian H as follows:

H =
1

2

1

(xf − x)N
η2 + λyγ + λγ

M
a+ γa(η + η0) (3.7)

The first-order necessary conditions to accomplish the optimality involve the following ad-

joint equations are determined by

λ′y = 0, λ′γ
M

= −λy, λ′a = −λγ
M

(3.8)

The boundary conditions are given by

λyf = νy, λγf = νγ
M
, λaf = 0 (3.9)

Integrating Eq. (3.8) backward from the terminal range xf gives

λy = νy, λγ
M

= νy(xf − x) + νγ
M
,

λa =
1

2
νy(xf − x)2 + νγ

M
(xf − x) (3.10)
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From the well-known optimal control theory, the optimal control is determined by imposing

the optimal condition as ∂H/∂η = 0. From this condition, we have

η = −1

2
νy(xf − x)N+2 − νγ

M
(xf − x)N+1 (3.11)

Then, substituting η and η0 into Eq. (3.4) and integrating Eq. (3.4) from x to s for s ∈ [x, xf ],
we can get explicit expressions of a(s), γM (s), and y(s) as follows:

a′(s) = η + η0 = η0 − 1

2
νy(xf − s)N+2 − νγ

M
(xf − s)N+1

a(s) = a+ η0(s− x)− 1

(N + 2)
νγ

M
(xf − x)N+2 − 1

2(N + 3)
νy(xf − x)N+3 (3.12)

+
1

(N + 2)
νγ

M
(xf − s)N+2 +

1

2(N + 3)
νy(xf − s)N+3

γM (s) = γf −
[
a+ η0(xf − x)− 1

(N + 2)
νγ

M
(xf − x)N+2 − 1

2(N + 3)
νy(xf − x)N+3

]
×

(xf − s) +
1

2
η0(xf − s)2 − 1

(N + 2)(N + 3)
νγ

M
(xf − s)N+3 (3.13)

− 1

2(N + 3)(N + 4)
νy(xf − s)N+4

and

y(s) = yf − γf (xf − s)

+
1

2

[
a+ η0(xf − x)− 1

(N + 2)
νγ

M
(xf − x)N+2 − 1

2(N + 3)
νy(xf − x)N+3

]
×

(xf − s)2 − 1

6
η0(xf − s)3 +

1

(N + 2)(N + 3)(N + 4)
νγ

M
(xf − s)N+4 (3.14)

+
1

2(N + 3)(N + 4)(N + 5)
νy(xf − s)N+5

where a denotes a(x). By evaluating these expressions at x = x0, we can determine the

terminal values νγ
M

and νy as

[
νy
νγ

M

]
=Wξξ +Wfξf +Wηη0 (3.15)
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where ξf =
[
yf γf

]T
and

Wξ =

⎡
⎢⎢⎣

4(N + 4)2(N + 5)

xN+5
go

2(N + 4)(N + 5)2

xN+4
go

2(N + 4)(N + 5)

xN+3
go

−2(N + 3)(N + 4)(N + 5)

xN+4
go

−(N + 3)(N + 4)(N + 6)

xN+3
go

−(N + 3)(N + 4)

xN+2
go

⎤
⎥⎥⎦

Wf =

⎡
⎢⎢⎣

−4(N + 4)2(N + 5)

xN+5
go

2(N + 3)(N + 4)(N + 5)

xN+4
go

2(N + 3)(N + 4)(N + 5)

xN+4
go

−(N + 3)(N + 4)2

xN+3
go

⎤
⎥⎥⎦ (3.16)

Wη =

⎡
⎢⎢⎣

−(N + 1)(N + 4)(N + 5)

3xN+2
go

(N + 2)(N + 3)(N + 4)

6xN+1
go

⎤
⎥⎥⎦

Substituting Eq. (3.15) into Eq. (3.11) leads to the optimal control as

η =

[
−2(N + 4)(N + 5)

x3go
−(N + 4)(N + 7)

x2go
−2(N + 4)

xgo

]
ξ

+

[
2(N + 4)(N + 5)

x3go
−(N + 3)(N + 4)

x2go

]
ξf +

(N − 1)(N + 4)

6
η0 (3.17)

Hence, from Eqs. (3.4) and (3.17), we can obtain ITACG which is given by the state feedback

form as

ΞITACG = Kξ +Kfξf +Kηη0 (3.18)

where

K =

[
−2(N + 4)(N + 5)

x3go
−(N + 4)(N + 7)

x2go
−2(N + 4)

xgo

]

Kf =

[
2(N + 4)(N + 5)

x3go
−(N + 3)(N + 4)

x2go

]
(3.19)

Kη =
(N + 1)(N + 2)

6

In this equation, the parameters K, Kη, and Kη are defined to be the guidance gains which are

also given by the function of the design parameter N . From here, by setting η0 in Eq. (3.18),

we finally obtain the generalized form of IACG for the augmented system as shown in Eq.

(3.6).

ΞIACG = Kξ +Kfξf (3.20)
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3.2. Derivation of time-to-go(τ̂go,IACG) of generalized IACG. The primary goal of this pa-

per is to determine the optimal solution of IACG in conjunction with the specific additional

term satisfying the desired impact time. It means that the length of estimated trajectory divided

by the missile speed should be equal to the desired time-to-go. Then the impact angle and the

impact time requirements are met simultaneously.

The impact time constraint in the non-dimensional form can be written by the term of the

curvature of the estimated trajectory [11, 12]:

τ̄go =

∫ xf

x

√
1 + γ2M (s, η0)ds (3.21)

where τ̄go denotes the normalized desired time-to-go, i.e., the difference between the desired

impact time and the current flight time. In our formulation, if η0 is properly chosen to satisfy

the condition as shown in Eq. (3.21), the impact angle and impact time requirements will be

satisfied.

From Eq. (3.21) the estimate in the normalized time-to-go for generalized IACG can be

expressed by simply setting η0 = 0 as follows:

τ̂go,IACG =

∫ xf

x

√
1 + γM (s; η0 = 0)2ds (3.22)

Letting ζ = xf − s for convenience and taking the first two terms of Taylor series expansion

of the integrand with respect to the heading angle provides

τ̂go,IACG =

∫ xf

x

√
1 + γ2Mds ≈

∫ xf

x

(
1 +

γ2
M

2

)
ds

=

∫ xf−x

0

(
1 +

1

2
γ̄M (ζ)2

)
dζ (3.23)

in which from Eq. (3.13)

γ̄M (ζ) = γf −
[
a− 1

(N + 2)
νγ(xf − x)N+2 − 1

2(N + 3)
νy(xf − x)N+3

]
ζ

− 1

(N + 2)(N + 3)
νγ

M
ζN+3 − 1

2(N + 3)(N + 4)
νyζ

N+4 +
1

2
η0ζ

2 (3.24)

From Eqs. (3.15) and (3.23), we obtain the estimate in the normalized time-to-go for IACG by

letting η0 = 0 as follows:

τ̂go,IACG = C +Δ−1(ξTPξ + ξTQξf + ξTf Rξ) (3.25)

where

Δ = 1080(N + 5)(N + 6)(N + 7)(2N + 7)(2N + 9) (3.26)

and

C = xgo (3.27)
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P = 90(N + 7)×⎡
⎣ 8(N + 4)(N + 5)2(4N + 19)/xgo 2(N + 5)(14N2 + 124N + 275)

2(N + 5)(14N2 + 124N + 275) 2xgo(N + 4)(15N2 + 151N + 376)
2xgo(N + 5)(4N + 19) x2go(3N + 13)(4N + 19)

2xgo(N + 5)(4N + 19)
x2go(3N + 13)(4N + 19)

2x3go(3N + 13)

⎤
⎦ (3.28)

Q = 180

⎡
⎣ −2(N + 4)(N + 5)2(N + 7)(4N + 19)/xgo

−2(N + 5)(N + 7)(14N2 + 124N + 275)
−2(N + 5)(N + 7)(4N + 19)xgo

2(N + 3)(N + 5)(N + 7)(4N2 + 26N + 37)
−2(N + 3)(N + 7)(N2 + 14N + 43)xgo

−(N + 3)(N + 7)(4N + 19)x2go

⎤
⎦ (3.29)

R = 180(N + 7)

[
4(N + 4)(N + 5)2(4N + 19)/xgo

−(N + 3)(N + 5)(4N2 + 26N + 37)

−(N + 3)(N + 5)(4N2 + 26N + 37)
(N + 3)2(N + 4)(4N + 19)/xgo

]
(3.30)

3.3. Derivation of generalized ITACG(η0 �= 0). Similarly, the estimate in the normalized

time-to-go for the generalized ITACG using an arbitrary input η0 �= 0 can be determined as

follows:

τ̂go,ITACG =

∫ xf

x

√
1 + γM (s; η0)2ds =

∫ xf−x

x

(
1 +

1

2
γ̄M (ζ2)

)
dζ (3.31)

γ̄M (ζ) = γf −
[
a+ η0(xf − x)− 1

(N + 2)
νγ

M
(xf − x)N+2 − 1

2(N + 3)
νy(xf − x)N+3

]
ζ

− 1

(N + 2)(N + 3)
νγ

M
ζN+3 − 1

2(N + 3)(N + 4)
νyζ

N+4 +
1

2
η0ζ

2 (3.32)

By substituting Eq. (3.32) into Eq. (3.31), we also yield the normalized time-to-go estimation

for ITACG in terms of τ̂go,IACG as follows:

τ̂go,ITACG = αη20 + βη0 + τ̂go,IACG (3.33)

α = Δ−1(N + 1)2(N + 2)2(8N + 35)x5go (3.34)

β = Δ−130(N + 1)(N + 2)x2go×[ −(N + 5)(4N2 + 20N + 7) 2xgo(5N
2 + 49N + 119) x2go(8N + 35)

]
ξ

+Δ−130(N + 1)(N + 2)x2go ×
[
(N + 5)(4N2 + 20N + 7)

−xgo(N + 3)(4N2 + 38N + 91)
]
ξf (3.35)
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3.4. Time-to-go error. Now let us define the impact time error ετ as follows.

ετ = τ̂go,ITACG − τ̂go,IACG (3.36)

From Eq. (3.33), we can easily observe that τ̂go,ITACG becomes to τ̂go,IACG when η0 vanishes.

By using Eq. (3.33), the impact time error can be also written as

η20 + (β/α)η0 = (ετ/α) (3.37)

Let us introduce new variables ηL = (β/α) and ηE = (4/α)ετ for simplicity, then the

additional control command denoted by η0 satisfying Eq. (3.22) can be determined as

η0 = −1

2

(
ηL ±

√
η2L + ηE

)
(3.38)

where

ηL =MT ξ +MT
f ξf (3.39)

ηE = NEετ (3.40)

Note that the term of ηE as given in Eq. (3.40) is used to control the impact time error ετ by

which τ̂go,ITACG is replaced with the desired time-to-go in the normalized form of τ̄go. Each

gains of ηL and ηE are given by

M =
30

(N + 1)(N + 2)(8N + 35)
×

[
−(N + 5)(4N2 + 20N + 7)

x3go

2(5N2 + 49N + 119)

x2go

(8N + 35)

xgo

]T
(3.41)

Mf =
30

(N + 1)(N + 2)(8N + 35)

[
(N + 5)(4N2 + 20N + 7)

x3go

−(N + 3)(4N2 + 38N + 91)

x2go

]T
(3.42)

NE =
4320(N + 5)(N + 6)(N + 7)(2N + 7)(2N + 9)

x5go(N + 1)2(N + 2)2(8N + 35)
(3.43)

From here, note that the solution of Eq. (3.38) exists in the case of ετ > 0 . Generally, in the

salvo attack scenarios, the desired impact time, which is the common goal of multiple missiles,

is chosen to be larger than the maximum value of the estimated impact times under IACG of

each missile. Hence, the impact time error εt has always a positive value in the initial time.

Then, the value of ετ approaches zero by employing ITACG. For the numerical stability in the

actual implementation, ετ in Eq. (3.38) can be computed by

ετ = max(ετ , 0) (3.44)

Also note that the sign of the second term on the right-hand-side (RHS) is decided to satisfy

such condition that η0 = 0 when ετ is null. This condition results in selecting the smaller one

in absolute value out of two available η0 s, i.e., positive sign for ηL ≥ 0, which is suitable for
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the original objective of the minimization of jerk-control energy. Also this condition matches

with the fact that if the impact time error is zero, the time-to-go of IACG is the same as the

desired time-to-go and thus there is no need for the additional control term to control the impact

time error. The optimal solution as given in Eq. (3.4) in conjunction with the additional control

command term as given in Eq. (3.38) can simultaneously satisfy the impact time and angle

constraints.

3.5. ITACG with original state variable. In the derivation of the proposed guidance law,

we use the non-dimensionalized variables for convenience. Therefore, we need to write the

guidance command using the original state variables. The non-dimensionalized variables used

in this work are given by

x = X/Lf , y = Y/Lf , a = aM /(VM/tf ),

η = G/(VM/t
2
f ), τ = t/tf (3.45)

The control input of Eqs. (3.1) and (3.4) can be rewritten in terms of the original states as

follows:

G = K̃ξ̃ + K̃f ξ̃f + K̃0g0 (3.46)

where

ξ̃ =
[
Y γM aM

]T
ξ̃f =

[
Yf γf

]
(3.47)

Accordingly, the feedback gains are also given by

K̃ =
[
−2(N+4)(N+5)V 3

M
X3

go
− (N+4)(N+7)V 3

M
X2

go
−2(N+4)VM

Xgo

]
K̃f =

[
2(N+4)(N+5)V 3

M
X3

go
− (N+3)(N+4)V 3

M
X2

go

]
(3.48)

K̃0 =
(N + 1)(N + 2)

6

Consequently, the normalized time-to-go for IACG as given in Eq. (3.24) is rewritten as

τ̂go,IACG = C +Δ−1(ξTPξ + ξTQξf + ξTf Rξf ) (3.49)

where ξ, C, P , Q, and R are defined in Eq. (3.5), and Eqs. (3.27) through (3.30), respectively.

Similarly, the estimation of the actual time-to-go by IACG can be converted as

t̂go,IACG = tf τ̂go,IACG = C̃ + Δ̃−1(ξ̃T P̃ ξ̃ + ξ̃T Q̃ξ̃f + ξ̃Tf R̃ξ̃f ) (3.50)

where

C̃ = Xgo/VM (3.51)
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P̃ = 90(N + 7)×
⎡
⎣ 8(N + 4)(N + 5)2(4N + 19)/VMXgo

2(N + 5)(14N2 + 124N + 275)/VM
2(N + 5)(4N + 19)Xgo/V

3
M

2(N + 5)(14N2 + 124N + 275)/VM 2(N + 5)(4N + 19)/XgoV
3
M

2(N + 4)(15N2 + 151N + 376)Xgo/VM (3N + 13)(4N + 19)X2
go/V

3
M

(3N + 13)(4N + 19)X2
go/V

3
M 2(3N + 13)X3

go/V
5
M

⎤
⎦

(3.52)

Q̃ = 180

⎡
⎣ −2(N + 4)(N + 5)2(N + 7)(4N + 19)/VMXgo

−2(N + 5)(N + 7)(14N2 + 124N + 275)/VM
−2(N + 5)(N + 7)(4N + 19)/V 3

M

2(N + 3)(N + 5)(N + 7)(4N2 + 26N + 37)/VM
−2(N + 3)(N + 7)(N2 + 14N + 43)Xgo/VM

−(N + 3)(N + 7)(4N + 19)x2go/V
3
M

⎤
⎦ (3.53)

R̃ = 180(N + 7)

[
4(N + 4)(N + 5)2(4N + 19)/VMXgo

−(N + 3)(N + 5)(4N2 + 26N + 37)/VM

−(N + 3)(N + 5)(4N2 + 26N + 37)/VM
(N + 3)2(N + 4)(4N + 19)Xgo/VM

]
(3.54)

Now we can estimate the actual impact time error εt as

εt = tfετ = t̂go,ITACG − t̂go,IACG (3.55)

The additional control command g0 can also be rewritten as

g0 = −1

2

(
η̃L ±

√
η̃2L + η̃E

)
(3.56)

where

η̃L = M̃T ξ̃ + M̃T
f ξ̃f (3.57)

η̃E = ÑEεt (3.58)

Here, each gains of η̃L and η̃E are given by

M̃ =
30

(N + 1)(N + 2)(8N + 35)
×

[
−(N + 5)(4N2 + 20N + 7)V 3

M

X3
go

2(5N2 + 49N + 119)V 3
M

X2
go

VM (8N + 35)

Xgo

]T
(3.59)
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M̃f =
30

(N + 1)(N + 2)(8N + 35)
×

[
(N + 5)(4N2 + 20N + 7)V 3

M

X3
go

−(N + 3)(4N2 + 38N + 91)V 3
M

X2
go

]T
(3.60)

ÑE =
4320(N + 5)(N + 6)(N + 7)(2N + 7)(2N + 9)

(N + 1)2(N + 2)2(8N + 35)

V 7
M

X5
go

(3.61)

Finally, the acceleration command to achieve the impact time and angle constraints together

is obtained by taking integration of the jerk command as given in Eq. (3.46).

4. NUMERICAL SIMULATION

4.1. Performance of the proposed generalized ITACG. In this section, we perform a num-

bers of numerical simulation in order to reveal the performance and the characteristic of the

proposed guidance law. In the first simulation, the performance of the proposed guidance law

according to changes of the design parameter N . Note that the proposed guidance law with

N = 0 is identical to the previous version of ITACG. In this simulation, we consider a homing

engagement scenario in which the missile flies with a constant speed of V = 250m/s and the

target is assumed to be a stationary battle ship. The initial missile positions are chosen to be

(0 km, 0 km) and (0 km, 10 km), respectively. In this engagement scenario, the initial head-

ing angle is set to be 20 deg and the desired impact angle is set to be −40 deg, respectively.

The prescribed impact time is chosen as td = 50 sec. Additionally, the initial guidance com-

mand and the initial value of the integrator are set to zero. Under this engagement case, we

perform simulations with and in order to find out that how the design parameter can affect the

performance of the proposed law.

FIGURE 2. Trajectories by

IACG and ITACG.

FIGURE 3.

Heading angles.

Figure 2 represents the flight trajectories of these simulation cases. In the condition of IACG

which is not supposed to control the impact time, the flight times are recorded as 42.7 deg for
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N = 0 and 42.9 deg for N = 1, respectively. On the other hand, we can observe that ITACG

can successfully satisfy the desired impact time td = 50 sec as shown in Fig. 2. Under ITACG,

it initially takes a detour in order to match its flight time. The heading angle as shown in Fig. 3

also shows the same tendency. In this figure, additionally, we can observe that ITACG can also

achieve the desired impact angle value (i.e., −40 deg) as well.

Figure 4 describes the acceleration profiles. This figure shows that ITACG needs more

control energy than IACG because ITACG should take a detour in the beginning of the homing

phase to enlarge the flight trajectory. However, it is noted that ITACG needs less control energy

near a target because ITACG generally takes a linear trajectory in the vicinity of the target to

nullify the impact time error.

FIGURE 4. Acceleration commands

Figure 5 shows the jerk profile which is defined to be the input variable under the proposed

method. In the case of ITACG, there is an abrupt command change around 34.8 deg due to the

change of sign in Eq. (3.56). Namely, in the selection of two solutions, the proposed guidance

law is designed to choose the solution that minimizes the control energy. Meanwhile, Fig. 6

represents the predicted impact time error which is computed from Eqs. (3.25) and (3.33).

Compare with IACG, the predicted impact time error under ITACG goes to zero as t→ tf .

Especially, if we use N = 1 instead of N = 0, then we can achieve a small acceleration

command around a target in the proposed guidance law as shown in Fig. 5 and 6. As shown

in Eq. (3.3), the cost value in the case of N = 1 gradually expensive as the time-to-go goes to

zero. Accordingly, the proposed guidance law with N = 1 tries to correct the guidance error

early in the flight phase

4.2. Application of generalized ITACG to a salvo attack scenario. In this section, we apply

the proposed guidance law to salve attack scenario to show the validity of the proposed method.

In this hear, the salve attack means that each missile systems start from the different initial

positions and after that all missile systems simultaneously attack a common target with various

designated impact angles and single designated impact time. In this simulation, we assume

that the target is placed on the origin as (0 km, 0 km). We consider the three missile systems

with different initial conditions as provided in Table. 1. Note that all flight times are also set to
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FIGURE 5. Jerk commands. FIGURE 6. Time-to-go errors.

td = 50 sec. Additionally, the proposed guidance laws with N = 2 are applied to all missile

systems.

TABLE 1. Scenario for Salvo Attack

(X0, Y0),[km] (γ0, γf ),[deg] td,[sec]

Target (0, 0) - -

Missile #1 (−10, 1) (30, 0) 50
Missile #2 (6, 6) (180,−90) 50
Missile #3 (11, 3) (180, 180) 50

Figure 7 shows the flight trajectories of multiple missile systems in the case of salvo attack

scenario. As shown in this figure, under IACG, the flight times of each missile systems can

be varied as 41.6 sec, 38.8 sec, and 46.1 sec. while, in the case of ITACG, all flight times are

coincident with the desired value td = 50 sec. In addition, a numbers of missile systems which

are guided by the proposed guidance law can successfully achieve the desired impact angle

values as well.

5. CONCLUSION

In this work, we propose a more generalized guidance to control the impact time and angle.

The proposed guidance law can provide an additional degree of option to choose the guidance

gain, then the designers can select the proper guidance gain as they want according to changes

of the considering engagement cases. For example, the proposed guidance law enables the

distribution of control effort near a target and the consideration of changing control efficiency

according to changes of the altitude. Namely, since we suggest a new guidance law considering

the control effort distribution, the proposed method can be applicable to the problem which

demands enlarging of the flight envelope.
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FIGURE 7. Salvo attack by IACG(solid) and ITACG(dotted)
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