• Title/Summary/Keyword: Missile Defence

Search Result 40, Processing Time 0.024 seconds

Guidance law for a missile after thrust cutoff

  • Baba, Yoriaki;Kishitani, Harunobu;Takano, Hiroyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.647-652
    • /
    • 1994
  • In the previous paper, we presented a new guidance law for a missile during boost phase. Thus, this paper deals with the guidance law for a missile after the thrust cutoff against an accelerating and turning target. It is essentially based on the concept of proportional navigation. Some simulation studies were performed using a three dimensional mathematical model of an air-to-air missile and the effectiveness of the guidance law presented was shown.

  • PDF

A Study on the Design of Correction Filter for High-Speed Guided Missile Firing from Warship after Transfer Alignment (전달정렬 함상 발사 고속 유도무기의 보정필터 설계에 대한 연구)

  • Kim, Cheon-Joong;Lee, In-Seop;Oh, Ju-Hyun;Yu, Hae-Sung;Park, Heung-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.108-121
    • /
    • 2019
  • This paper presents the study results on the design of the correction filter to improve the azimuth error estimation of the high-speed guided missile launched from the warship after the transfer alignment. We theoretically proved that the transfer alignment performance is determined by the accuracy of the marine inertial navigation system and the observability of the attitude error state variable in the transfer alignment filter, and that most of navigation errors in high-speed guided missile are caused by azimuth error. In order to improve the azimuth estimation performance of the correction filter, the multiple adaptive estimation method and the adaptive filters adapting the measurement noise covariance or the process noise covariance are proposed. The azimuth estimation performance of the proposed adaptive filter and the existing Kalman filter are compared and analyzed each other for 8 different transfer alignment accuracy cases. As a result of comparison and analysis, it was confirmed that the adaptive filter adapting the process noise covariance has the best azimuth estimation performance. These results can be applied to the design of correction filters for high-speed guided missile.

Numerical Simulations of the Supersonic Jet Impingement in a Confined Plenum of Vertical Launching System

  • Lee Kwang-Seop;Lee Jin-Gyu;Hong Seung-Kyu;Ahan Chang-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.301-305
    • /
    • 2006
  • The Vertical Launching System design is especially complicated by complex flow structure in a plenum with the severe thermal state and high pressure load form the hot exhaust plume. The flow structures are numerically simulated by using the commercial code, CFD-FASTRAN with the axi-symmetrical Navier-Stokes equations. Two different cases are considered; that is, the stationary fire and the moving fire.

  • PDF

A real time simulation for IR Guided Missile (적외선 유도탄의 실시간 시뮬레이션)

  • Kim, T.Y.;Kim, Y.J.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.421-423
    • /
    • 1993
  • A real time simulation is an effective tool for use in design, performance evaluation, and testing of the vehicle dynamic system. An alternate approach is to use a computer system designed specifically to provide an integrated simulation environment in which all aspects of hardware-in-the-loop simulation task have been taken into account.

  • PDF

Application and Determination of Defended Footprint Using a Simulation Model for Ballastic Missile Trajectory (탄도미사일 궤적 시뮬레이션 모델을 이용한 방어영역 산출 및 응용)

  • Hong, Dongwg;Yim, Dongsoon;Choi, Bongwhan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.551-561
    • /
    • 2018
  • Footprint is defined as ground area that is projected from the outer edges of the battle space protected by a defence system. This concept can be effectively used for making decisions on site selection of anti missile systems to defend against enemy's ballistic missiles. In this paper, simulations of ballistic missile trajectories based on various launch conditions are performed first and then the footprint is derived with engagement zone set as a boundary condition. Results of the simulation with various relative positions between the defense system and defended asset are also presented. The proposed method, in which the trajectories are generated based on launch point of the ballistic missile, has an advantage of approximating the defended area close to reality. Two applications are introduced in the present paper to describe how the derivation of defended area could be utilized in deployment decision of defense systems.

An Analysis on Confidence Level of Domestic Precision Guided Missile(PGM) based on Live-fire Test Results (국내 정밀유도무기 사격시험 결과 기반 신뢰수준 분석)

  • Seo, Bo-Gil;Yoon, Young Ho;Kim, Bo Ram
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.215-225
    • /
    • 2020
  • Purpose: The purpose of this study was to show current states of domestic Precision Guided Missile(PGM) by analyzing Live-fire test results using general methods to get the Confidence Levels. Methods: Live-fire test results were used to get Confidence Levels of PGM. The Confidence Levels were derived by two general methods. The first method was Binomial distribution and second was convergence of Hypergeometric distribution and Bayes' rule. Results: The results of this study are as follows; The more Live-fire tests of PGM are performed, the higher Confidence Level of PGM will be estimated. And the number of Live-fire tests are related to a unit price of PGM. This results means that the increase of live-fire test, which is useful data for preparation and evaluation of Development Tests / Operation Tests for PGMs, is only way to enhance the Confidence Levels of each PGMs. Conclusion: This study shows the relationship between the Live-fire tests and Confidence Levels of PGMs and it will be used on Live-fire Test & Evaluation of PGMs for reference.

Characteristics of Supersonic Nozzle and Jet Impingement (초음속 노즐과 벽면 충돌제트의 유동특성)

  • Hong, Seung-Kyu;Lee, Kwang-Seop;Sung, Woong-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.256-262
    • /
    • 2001
  • Viscous solutions of supersonic side jet nozzle and supersonic jet impinging on a flat plate are simulated using three-dimensional Navier-Stokes solver. For rapid and abrupt control of a missile in supersonic flight, side jet on a missile body is found to be a useful devise as evidenced by recent missile development at several nations. The magnitude of the side jet and the duration of it decide the level of control of such a missile system. The aerodynamic characteristics of the side jet devise itself are examined in terms of key parameters such as the side jet nozzle geometry, the chamber pressure and temperature. On the other hand, the jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. As the plate is placed close to the nozzle, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. The amplitude of wall pressure fluctuations subsides as the plate/nozzle distance increases, and the frequency of the wall pressure is estimated on the order of 10.0 KHz. Objectives of this paper are to show accurate simulation of nozzle flow itself and to demonstrate the jet flow structure when the jet interacts with a wall at a close range.

  • PDF

Earliest Intercept Geometry Guidance to Improve Mid-Course Guidance in Area Air-Defence

  • Shin, Hyo-Sang;Tahk, Min-Jea;Tsourdos, A.;White, B.A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.118-125
    • /
    • 2010
  • This paper describes a mid-course guidance strategy based on the earliest intercept geometry (EIG) guidance. An analytical solution and performance validation will be addressed for generalized mid-course guidance problems in area air-defence in order to improve reachability and performance. The EIG is generated for a wide range of possible manoeuvres of the challenging missile based on the guidance algorithm using differential geometry concepts. The main idea is that a mid-course guidance law can defend the area as long as it assures that the depending area and objects are always within the defended area defined by EIG. The velocity of Intercept Point in EIG is analytically derived to control the Intercept Geometry and the defended area. The proposed method can be applied in deciding a missile launch window and launch point for the launch phase.

A Study for Vision-based Estimation Algorithm of Moving Target Using Aiming Unit of Unguided Rocket (무유도 로켓의 조준 장치를 이용한 영상 기반 이동 표적 정보 추정 기법 연구)

  • Song, Jin-Mo;Lee, Sang-Hoon;Do, Joo-Cheol;Park, Tai-Sun;Bae, Jong-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.315-327
    • /
    • 2017
  • In this paper, we present a method for estimating of position and velocity of a moving target by using the range and the bearing measurements from multiple sensors of aiming unit. In many cases, conventional low cost gyro sensor and a portable laser range finder(LRF) degrade the accuracy of estimation. To enhance these problems, we propose two methods. The first is background image tracking and the other is principal component analysis (PCA). The background tracking is used to assist the low cost gyro censor. And the PCA is used to cope with the problems of a portable LRF. In this paper, we prove that our method is robust with respect to low-frequency, biased and noisy inputs. We also present a comparison between our method and the extended Kalman filter(EKF).

Investigation of the Intake Stability of Bank-to-Turn Supersonic Missile under Sideslip Angle Based on CFD Analysis (CFD 해석 기반 종축기동 초음속 비행체의 옆미끄럼각에 따른 흡입구 안정성 분석)

  • Park, Jungwoo;Park, Iksoo;Jin, Sangwook;Park, Keunhong;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.8-16
    • /
    • 2014
  • This paper analyzes the effects of sideslip angle(SA) on the buzz margin of supersonic intake. The buzz margin is assumed to be stabilized by a controller which generates command depending only on the longitudinal sensor measurements. The analysis is performed based on three dimensional CFD results with which the sensor measurements can be simulated. In such a control system based on the longitudinal measurements, unexpected lateral flow perturbation results in the increase in the total angle of attack(TAoA), that causes the degradation of the engine intake performance. As a consequence, it is shown that the control stability is reduced such that additional control margin needs to be secured.