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A full engagement of a missile against an attacking missile 

consists of three phases: launch, mid-course and terminal 

homing phase. For long or medium range engagement the 

missile generally cannot lock on to the target so that the 

mid-course guidance law will be applied to the missile. Mid-

course guidance phase refers to the procedure that guides 

the missile to a terminal handover point in order to acquire 

the target motion through its on-board sensor. The mid-

course guidance law differs significantly from the guidance 

logic for the terminal homing phase due to the inherited 

characteristic of the mid-course guidance: it must not only 

find the best condition for the terminal homing phase, but 

also deliver the missile to that condition using only the 

target motion data updated by the external source such as 

a plane, ship, or ground base. Although there are a number 

of objectives for the mid-course guidance, it is possible to 

classify them into two main categories. 

Firstly, the onus is on the mid-course guidance to achieve 

the best terminal handover condition, i.e. to provide certainty 

that the missile can reach the target. For a target at a great 

distance, the mid-course guidance opts to maximize the 

terminal velocity and/or minimize the energy loss in order 

to gain high velocity and manoeuvrability advantages for 

the terminal homing guidance. Minimizing the flight time 

is commonly relevant to a close in target problem, since 

the missile should intercept the target before attacking its 

objective (Song and Tahk, 1998). The necessary conditions 

for an optimal mid-course guidance problem form a two-

point boundary-value problem (Kirk, 1970). However, it is 

unfeasible not only to derive the analytical solution but also 

to find a numerical solution in real time by any present-day 

on-board computer. 

Several approaches have been proposed to solve the 

optimal mid-course guidance problem. Song and Tahk 
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(1998, 1999, 2001) have addressed artificial neural networks 

for the mid-course guidance algorithms to generate 

suboptimal guidance commands in a feedback fashion. 

Whilst this approach can overcome the difficulty in deriving 

an on-board optimal guidance law, it is difficult to cover all 

the region of the input vector for neural network training, 

and the stability cannot be guaranteed. To find a real time 

sub-optimal guidance algorithm, singular perturbation 

technology (SPT) (Cheng and Gupta, 1986; Dougherty and 

Speyer, 1997; Menon and Briggs, 1990) and linear quadratic 

regulator (LQR) (Imado and Kuroda, 2009; Imado et al., 1990) 

have been proposed. However, a guidance law based on SPT 

does not result in a true feedback control, and the LQR type 

guidance algorithm needs a large set of database. 

Another important objective in the mid-course guidance is 

protecting and defending an area. For instance, two primary 

tasks of the maritime air defence area are protection of sea 

traffic or convoys and coast line protection against attacking 

weapon systems such as anti-ship missile (ASM), which has 

a high kill probability and low detectability. It is important 

that the mid-course guidance algorithm guides the missile 

to the acquiring point in order to guarantee reachability 

of the guidance in the terminal homing phase. However, 

the missile cannot guarantee to intercept and destroy the 

challenging missile before it has struck its target within the 

defending area. 

Over the past decades, a range of missile genres have been 

developed and each of them has well published advantages 

and disadvantages. Yet there has been little research dealing 

with naval area defence and protection directly. For warships 

to continue their primary role, it is essential that air defence 

for a single unit, be it large or small, a close escort or a major 

surface group, provides a comprehensive defence against all 

types of air threat, from the sea skimmer to the high diving 

missile in addition to attack aircraft and weapon carrying 

unmanned aerial vehicles. 

In our study represented in reference (Robb et al., 2005a, b), 

the earliest intercept line (EIL) concept is proposed for a mid-

course guidance using shortest path technologies ‘Dubins’ 

(Dubins, 1957). The guidance law can improve reachability 

under consideration of lateral acceleration saturation and 

unpredictable target missile manoeuvre. Moreover, since 

the guidance algorithm is based on differential geometry, 

it is easy to show whether or not the missile can intercept 

the challenging missile while protecting the defending area. 

However, it is impossible to derive an analytical solution 

using the proposed algorithm and difficult to analyse the 

performance of the guidance algorithm mathematically. 

This paper will describe an analytical solution and 

performance validation for a generalized mid-course 

guidance problem in area air-defence which improves 

reachability and overcomes the weakness of the previous 

study (Robb et al., 2005a, b). As will be seen, the proposed 

mid-course guidance strategy is derived based on the earliest 

intercept geometry (EIG) concepts. The EIG is generated for a 

wide range of possible manoeuvres of the challenging missile 

based on the guidance algorithm using differential geometry 

concepts (White et al., 2007). The main idea is that a mid-

course guidance law can defend the area as long as it assures 

that the depending area is always inside the defended area 

defined by EIG. An analytical approach for controlling 

EIG and the defended area will be addressed to enhance 

reachability and performance of the guidance algorithm. 

The proposed method can be applied in deciding a missile 

launch window and launch point for the launch phase. 

2. Earliest Intercept Geometry

The guidance algorithm described in this paper is a subset 

of possible solutions for a non-manoeuvring target, which 

have been proposed in our previous research (White et al., 

2007) using different geometry concepts (Lipschutz, 1969; 

O’Neill, 1997). The algorithm is identical to the concept of 

proportional navigation guidance (PNG). Therefore, this 

gives solutions as robust as PNG algorithms, and allows for 

greater flexibility in the choice of trajectory which enhances 

reachability. Moreover, it allows predicting the precious 

Intercept Geometry which is vital in the area air-defence. 

The guidance geometry for a non-manoeuvring target and 

missile is shown in Fig. 1.

Fig. 1. Guidance geometry for direct intercept.

Figure 1 shows the case in which a target is flying in a 

straight line at constant velocity vt . The missile is flying 

at velocity vm , also in a straight line. Both trajectories are 
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assumed to intercept at the Intercept Point I. The target and 

missile together with the Intercept Point form a triangle, which 

will be called the Intercept Triangle. In order to establish the 

matching condition for intercept, consider a time T  such 

that the target has travelled in a straight line and at constant 

velocity from its initial position to the Intercept Point as 

shown in Figure 1. The length of this trajectory st  will be: 

	 		 (1)

In order for the missile to arrive at the Intercept Point, it 

must travel a distance sm  in the same time T. i.e.: 

	 		 (2)

The ratio of the trajectory lengths is then given by: 

	

As proposed in our previous study (White et al., 2007), 

implementing the cosine rule to the Intercept Triangle gives: 

	 	 (3)

where θm  and θt  are the missile-to-sightline angle and the 

target-to-sightline angle, respectively; and, r  represents 

the sightline range. Given that γ >1 , the solution for Eq. (3) 

must be positive. For γ  smaller than or equal to unity, the 

determination of the sign in Eq. (3) will be addressed in this 

section. 

If a challenging missile heading angle and the range of 

Intercept Triangles are given, the Intercept Geometry is fixed. 

However, because the heading angle of the challenging 

missile can change and it is impossible to predict its lateral 

acceleration, the geometry cannot be determined. It is, 

therefore, possible to derive the locus of possible Intercept 

Triangles, i.e. the Intercept Geometry, by considering all viable 

headings of the challenging missile. The ratio of velocities γ  

is important to find the Intercept Geometry as, if the ratio falls 

below unity, the possible missile position is restricted to a 

position in front of the target. A range of velocity ratios can 

be classified by three main categories due to the significant 

difference of the Intercept Geometry: the velocity ratio greater 

than unity, less than unity and equal to unity. Their Intercept 

Geometries are shown in Fig. 2.

   

(a) γ >1

 (b) γ <1  

(c) γ =1

Fig. 2. Locus of impact triangle.

From these figures it can be seen that a velocity ratio 

larger than unity produces possible missile positions for 

intercept both behind and in front of the target. The Intercept 

Geometries for velocity ratios less than or equal to unity 

show that there is a region that cannot produce an Intercept 

Triangle. A velocity ratio greater than unity is desirable to 

enable the target to be engaged from any position and with a 

reasonably small range to go before its strike. Current trends 

involve reducing the cost of missile systems, and so the speed 

advantage required for acquisition under all conditions will 

be lost as missiles with speed ranges comparable with the 

target are designed. 

The Intercept Geometry is not unique; the only condition 

that is required for a non-manoeuvring intercept is that the 

ratio of the trajectories is the same as the ratio of the velocities. 

Figure 3 shows the Intercept Geometry that is required.
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Fig. 3. Intercept geometry.

The geometry is drawn using the sightline axes centred 

in the missile, hence x is along the sightline and y is normal 

to it, with r  as the sightline range between the missile and 

the target. As the target angle to the sight line θt  varies, the 

Intercept Point I will change. The locus of the Intercept Point 

can be determined by using the Pythagoras Theorem on two 

triangles. The first is triangle is denoted as M I N, composed of 

the missile position M, the Intercept Point I and the intercept 

of the normal from the Intercept Point onto the sightline N. 

The second is triangle T I N, replacing the missile position 

with the target position T. Hence: 

	 	   (4)

Using Eq. (3), this yields: 

	 	   (5)

This equation represents a circle with radius rl  and centre 

cl  with respect to the sightline axes, where: 

	 		  (6)

The speed ratio γ  is key parameter of Eqs. (2-5). As shown in 

Eq. (6), the centre of the intercept circle cl  is greater than r  

for γ  larger than unity, so that the centre is always closer to 

the target than the missile. Moreover, since subtracting the 

radius of the intercept circle from the distance between the 

centre and the target gives: 

	 	   (7)

the target will be always located in the circle as shown in Fig. 

2(a). However, if we have γ  smaller than 1, there is the range 

of θt  for which: 

	 		 (8)

which implies that for some geometry, a real solution is not 

possible and the missile will not be able to intercept the 

target. Such a condition is shown in Fig. 2(b). For γ  smaller 

than unity, the centre of the intercept circle is negative, i.e. 

the centre is placed along the sightline but on the opposite 

direction to the target. Furthermore, the radius of the circle is 

greater than the distance between the centre and the missile 

so that the missile will be always inside the circle. Therefore, 

if the ratio is greater than unity the defended area of the 

missile is outside the circle; however, the defended area is 

inside the circle for γ  smaller than unity. This property can 

be used to allocate the missile in the position guaranteeing 

the area defence: for γ  larger than unity, the missile has to 

launch when every defended object is located outside the 

circle, and the missile makes sure the defended objects are 

placed inside the circle where γ  is smaller than 1 

For γ  smaller than unity, there are two matching conditions 

for the ratio r/sr represented in Eq. (3) for one target heading 

angle: if the sign in Eq.  (3) is positive, then the desired 

heading angle of the missile is an acute angle, otherwise it is 

an obtuse angle. In the SvA problem, since the SAM should 

protect the defended objects, it’s better to choose an acute 

angle solution between two possible solutions for γ <1 . If 

the missile is heading for the Intercept Point along an obtuse 

heading angle under the assumption that the defended 

objects are only inside the Intercept Geometry, then missile 

cannot protect the defended objects; however, if the heading 

angle solution is an acute angle, the missile can likely defend 

the area. Therefore, the acute heading angle is the only angle 

considered for the solution angle. 

For the case in which the missile and target are travelling 

at the same speed, we have γ  equal to unity and the Intercept 

Geometry is no longer a circle. The matching condition now 

becomes: 

	 	   (9)

There is no longer an imaginary solution, and there are now 

two real solutions given by: 

	 	 (10)

The first solution implies a geometry which produces an 

isosceles triangle solution as before, for st  equal to sm . The 

second solution implies that the ratio r/sr is equal to zero, 

subsequently St = ∞ бand Sm = ∞. In this case, the missile 

cannot intercept the target and protect the defended objects. 

Therefore, the first solution is considered in this paper. 

Substituting γ =1  into Eq. (4) yields: 
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	 	 (11)

Note that this means for γ  equal to unity, the Intercept 

Geometry is a line as shown in Fig. 2(c). 

The locus also has another interpretation. Given that the 

target is travelling at constant velocity in a fixed direction, 

as shown in Fig. 2, the locus represents the earliest intercept 

that the missile can achieve. This is based on the fact that the 

shortest distance between two points is a straight line. Hence 

the straight line Intercept Geometry in Fig. 2 represents the 

EIG.

3. Geometry Control

The EIG concept implies that if the target manoeuvres away 

from a straight line trajectory for striking its aiming object, 

then the missile travelling on a straight line trajectory can 

achieve the intercept outside the defended zone defined by 

the EIG. As mentioned in the previous section, the defended 

zone is outside the EIG for γ  greater than or equal to unity 

and inside the EIG for γ  smaller than unity. Conversely, if 

the missile deviates from a straight line trajectory, then the 

Intercept Point must lie within the defended zone. Therefore, 

the proposed mid-course guidance strategy is to keep all the 

defended object and objects within the defended area. This 

interpretation is useful in capturing the area in which the 

target can evade intercept and the missile can successfully 

defend. 

Due to physical and operational conditions of the missiles, 

the missile cannot always protect the defended objects or 

area. Figure 4 represents one of these cases when the missile 

velocity is greater than that of the challenging.

Fig. 4. Failure geometry.

If it is possible to control the EIG to allocate the defended 

area within updated defended zone, the problem can 

be resolved. Therefore, it is needed to control the EIG in 

order to improve reachability and performance of the 

guidance algorithm. This can be achieved to some extent by 

examination of the impact triangle shown in Fig. 1. 

The Intercept Point I is stationary for the missile and 

target velocity vectors lying along the impact triangle sides 

for a non-manoeuvring target. In order to see this, consider 

the velocity of the impact point vI  in the inertial reference 

frame. The position vector of the Intercept Point I can be 

represented with respect to the target T: 

	 	 (12)

where rI  and rt  are the position vectors of the Intercept Point 

and the target, and t t  is the unit vector tangent to the target 

velocity vector. Furthermore, from the first time derivative of 

the position vector, we have:

	 	 (13)

where θ ft  is the heading angle of the challenging missile. 

The intercept condition must obey the equation: 

	 	 (14)

Differentiating the above equation with respect to time 

gives: 

 	(15)

Then, ts  can be derived as: 

	 	 (16)

In Fig. 1, the sightline-to-missile angle is the desired angle 

to intercept a non-manoeuvring target. However, it can be 

different from the desired angle for a deliberate purpose, or 

due to the missile’s physical constraints as shown in Fig. 5. To 

derive the range rate and the line-of-sight (LOS) angle rate, 

consider a guidance geometry of a challenging missile and a 

defending missile whose heading angle is either the same as 

or different from the desired angle.

Fig. 5. Guidance geometry.
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From the guidance geometry, the first time derivatives of 

the range and LOS are given by: 

	 	 (17)

	 	 (18)

where θm  is the real sightline-to-missile angle. Substituting 

Eq. (17) into Eq. (16) yields: 

	 	 (19)

Moreover, substituting this equation into Eq. (13) gives: 

 

(20)

This equation implies that the Intercept Geometry can be 

controlled. 

For analysis of the guidance geometry, consider the 

direct intercept guidance for either a manoeuvring or non-

manoeuvring challenging missile under the assumption that 

the missile can change its heading angle instantaneously; 

the missile is always heading for the Intercept Point derived 

using a geometrical matching condition, i.e. 

	 	 (21)

For a direct intercept guidance:

	 	 (22)

Substituting these two equations and into Eq. (20) yields: 

	 	 (23)

From the intercept matching condition, we have: 

	 	 (24)

Then, the Intercept Point velocity becomes: 

	 	 (25)

Note that since: 

	 	 (26)

and the tangent vector, t, at the Intercept Point can be 

represented as: 

	 	 (27)

the Intercept Point velocity is tangent to the intercept 

circle. For a non-manoeuvring challenging missile, as its 

challenging missile heading angle rate is zero, we have: 

	 	 (28)

and the Intercept Point is stationary in space. 

Now, consider a non-manoeuvring target, but the missile-

to-sightline angle θm  is different from the desired angle θm  

for the intercept on the purpose controlling the Intercept 

Geometry. As represented in Eq. (20), in order to change the 

position of the impact point, the missile-to-sightline angle 

θm  should be set to give a change rate of the Intercept Point. 

In a scenario that the challenging missile can hit one of the 

defended objects, the worst scenario for the missile is that 

the challenging missile is heading directly to the defended 

object as shown in Fig. 4. In this scenario, the heading angle 

of the challenging missile is locked on its target and its rate 

is zero: 

	 	 (29)

Furthermore, the target-to-sightline angle rate is the same as 

that of the sightline: 

	 	 (30)

Substituting these two equations and Eq. (18) into Eq. (20) 

yields: 

	 	(31)

Note that the equation shows that it is possible to control 

the Intercept Point along the target tangent vector t t  by 

manipulating the sightline-to-missile angle. For further 

analysis, the angle is represented as: 

	 	 (32)

Then, the Intercept Point velocity vI  along t t  can be 

derived: 

  	 (33)
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Since the Intercept Point velocity can be derived as: 

	 	 (34)

the Intercept Point velocity is positive or equal to zero.

4. Numerical Examples

Surface to air missile versus Anti ship missile (SvA) 

problems are considered to verify the proposed missile mid-

course algorithm in area air-defence. Two SvA scenarios 

are classified by different anti ship missile (ASM) lateral 

acceleration: the acceleration is zero in the first scenario, 

and 10g  in the second scenario. The initial conditions of 

ASM and surface to air missile (SAM) are the same in two 

scenarios except the ASM lateral acceleration and given in 

Table 1.

Note that it is possible to notice that the speed ratio γ  

is 2 from Table 1. In the simulations, it is assumed that two 

missiles are lag free systems and can change their flight 

heading angle instantaneously. Simulation results are 

represented in Figs. 6 and 7.

ICs in the figures represent the intercept circle. As shown 

in Fig. 6, the Intercept Geometry does not change when the 

missile can instantaneously follow the desired heading angle 

for the non-manoeuvring challenging missile. Figure 7 shows 

that if the manoeuvres of the challenging missile (move?) 

away from a straight line trajectory to get to the intercept with 

the circular locus, then the missile can achieve the intercept 

within the circle that contains the ASM.

5. Conclusions

In this paper, the missile mid-course guidance law in 

area air-defence is proposed using the EIG concepts and 

differential geometry to resolve single-to-single problem. Its 

characteristics are mathematically analysed under several 

assumptions to improve reachability and overcome the 

drawbacks in our previous studies (Robb et al., 2005a, b). 

Furthermore, its performance is examined by using some 

numerical examples. The proposed method can be used 

in the launch phase because it provides the defended zone 

defined by the EIG. A launch window and launch point can 

be determined by finding a moment and position that the 

guidance algorithm assures all the defended area and objects 

are inside the defended zone. 

For the next step of in the series of the mid-course guidance 

law in area air-defence, physical and operational constraints 

of the missiles will be considered to analyse the effect on the 

EIG. Furthermore, the multiple defending missiles versus 

multiple challenging missiles problem will be considered in 

order to develop cooperative missile guidance techniques 

and improve global defence performance.

Table 1. Initial conditions

ASM SAM

Position (km, km) (15, 5) (0, 0)

Velocity (m/s) 300 600

Heading angle (deg) 0 -100

ASM: anti ship missile, SAM: surface to air missile.

Fig. 6. Guidance geometry change of scenario 1. Fig. 7. Guidance geometry change of scenario 2.



125

Shin  et al.    Earliest Intercept Geometry Guidance to Improve Mid-Course Guidance in Area Air-Defence

http://ijass.or.kr

References

Cheng, V. H. L. and Gupta, N. K. (1986). Advanced 

midcourse guidance for air-to-air missiles. Journal of 

Guidance, Control, and Dynamics, 9, 135-142.

Dougherty, J. J. and Speyer, J. L. (1997). Near-optimal 

guidance law for ballistic missile interception. Journal of 

Guidance, Control, and Dynamics, 20, 355-361.

Dubins, L. E. (1957). On curves of minimal length with a 

constraint on average curvature, and with prescribed initial 

and terminal positions and tangents. American Journal of 

Mathematics, 79, 497-516.

Imado, F. and Kuroda, T. (2009). Optimal midcourse 

guidance system against hypersonic targets. AIAA Guidance, 

Navigation, and Control Conference, Hilton Head, SC. pp. 

1006-1011.

Imado, F., Kuroda, T., and Miwa, S. (1990). Optimal 

midcourse guidance for medium-range air-to-air missiles. 

Journal of Guidance, Control, and Dynamics, 13, 603-608.

Kirk, D. E. (1970). Optimal Control Theory: An Introduction. 

Englewood Cliffs, NJ: Prentice-Hall.

Lipschutz, M. M. (1969). Theory and Problems of 

Differential Geometry (Schaum’s Outline Series). New York: 

McGraw-Hill.

Menon, P. K. A. and Briggs, M. M. (1990). Near-optimal 

midcourse guidance for air-to-air missiles. Journal of 

Guidance, Control, and Dynamics, 13, 596-602.

O’Neill, B. (1997). Elementary Differential Geometry. 2nd 

ed. San Diego: Academic Press.

Robb, M., White, B. A., and Tsourdos, A. (2005a). ‘Earliest 

Intercept Line Guidance’: a novel concept for improving 

mid-course guidance in area air defence. AIAA Guidance, 

Navigation, and Control Conference, San Francisco, CA. pp. 

1370-1394.

Robb, M., White, B. A., Tsourdos, A., and Rulloda, D. 

(2005b). Reachability guidance: a novel concept to improve 

mid-course guidance. American Control Conference, 

Portland, OR. pp. 339-345.

Song, E. J. and Tahk, M. J. (1998). Real-time midcourse 

guidance with intercept point prediction. Control Engineering 

Practice, 6, 957-967.

Song, E. J. and Tahk, M. J. (1999). Real-time midcourse 

missile guidance robust against launch conditions. Control 

Engineering Practice, 7, 507-515.

Song, E. J. and Tahk, M. J. (2001). Real-time neural-

network midcourse guidance. Control Engineering Practice, 

9, 1145-1154.

White, B. A., Zbikowski, R., and Tsourdos, A. (2007). Direct 

intercept guidance using differential geometry concepts. 

IEEE Transactions on Aerospace and Electronic Systems, 43, 

899-919.


