DOI QR코드

DOI QR Code

Investigation of the Intake Stability of Bank-to-Turn Supersonic Missile under Sideslip Angle Based on CFD Analysis

CFD 해석 기반 종축기동 초음속 비행체의 옆미끄럼각에 따른 흡입구 안정성 분석

  • Park, Jungwoo (Advanced Propulsion Technology Center, Agency for Defence Development) ;
  • Park, Iksoo (Advanced Propulsion Technology Center, Agency for Defence Development) ;
  • Jin, Sangwook (Advanced Propulsion Technology Center, Agency for Defence Development) ;
  • Park, Keunhong (Ant-ship Missile Systems Department, Agency for Defence Development) ;
  • Hwang, Kiyoung (Advanced Propulsion Technology Center, Agency for Defence Development)
  • Received : 2013.12.09
  • Accepted : 2014.05.09
  • Published : 2014.06.01

Abstract

This paper analyzes the effects of sideslip angle(SA) on the buzz margin of supersonic intake. The buzz margin is assumed to be stabilized by a controller which generates command depending only on the longitudinal sensor measurements. The analysis is performed based on three dimensional CFD results with which the sensor measurements can be simulated. In such a control system based on the longitudinal measurements, unexpected lateral flow perturbation results in the increase in the total angle of attack(TAoA), that causes the degradation of the engine intake performance. As a consequence, it is shown that the control stability is reduced such that additional control margin needs to be secured.

본 논문은 옆미끄럼각에 따른 초음속 흡입구 버즈마진의 영향도에 대해 분석하였다. 버즈마진은 비행체 종축면에서 획득한 측정 물리량 기반으로 제어 명령을 산출하는 제어기에 의해 안정화 된다고 가정하였다. 해당 분석은 3차원 CFD를 통해 획득한 결과를 기반으로 수행되었으며, 3차원 CFD 해석 데이터는 종축면의 센서 측정 물리량을 모사하기 위해 사용되었다. 종축면 측정치 기반의 제어시스템에서는 기대하지 않은 횡방향 유동 섭동이 총 받음각의 증가의 결과로 나타나며, 이는 엔진 흡입구 성능의 감소를 의미한다. 결과적으로, 제어 안정성 또한 줄어들게 되어 보다 큰 제어 마진이 요구됨을 확인할 수 있었다.

Keywords

References

  1. Ahsun, U., Merchant, A., Paduano, J.D. and Drela, M., "Design of a Near-Isentropic Supersonic Inlet Using Active Control," Journal of Propulsion and Power, Vol. 21, No. 2, pp. 292-299, 2005. https://doi.org/10.2514/1.7709
  2. Smith, R.L., "An Autopilot Design Methodology for Bank-to-Trun Missiles," AFATL-TR-89-49, 1989.
  3. Park, J.W., Park, I.S., Seo, B.G., Sung, H. G., Ananthkrishinan, N. and Tahk, M. J., "Optimal Terminal Shock Position under Disturbances for Ramjet Supercritical Operation," Journal of Propulsion and Power, Vol. 29, No. 1, pp. 238-248, 2013. https://doi.org/10.2514/1.B34431
  4. Hurrell, H.G., "Analysis of Shock Motion in Ducts During Disturbances in Downstream Pressure," NACA TN-4090, 1957.
  5. Choi, J.H., Lee, J.Y., Yoon, H.G. and Lim, J.S., "Supersonic Air Data Acquisition Algorithm using Total Pressure Sensors," KSPE Spring Conference, pp. 215-218, 2011.
  6. Peter H. Zipfel, "Modeling and Simulation of Aerospace Vehicle Dynamics 2nd edition," AIAA Education Series, 2007.
  7. Park, J.W., Sung, H.G. and Tahk, M.J., "Trajectory Optimization of Supersonic Vehicle and its Application," KSPE Spring Conference, pp. 411-413, 2009.
  8. Schwartz, L.W., "On the Analytic Structure of the Taylor-Maccoll Conical-Flow Solution," Journal of Applied Mathematics and Physics, Vol. 26, pp. 407-414, 1975. https://doi.org/10.1007/BF01590778