• Title/Summary/Keyword: Misalignment

Search Result 552, Processing Time 0.032 seconds

Physical Offset of UAVs Calibration Method for Multi-sensor Fusion (다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법)

  • Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1125-1139
    • /
    • 2022
  • In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.

Impact of Deep-Learning Based Reconstruction on Single-Breath-Hold, Single-Shot Fast Spin-Echo in MR Enterography for Crohn's Disease (크론병에서 자기공명영상 장운동기록의 단일호흡 단발 고속 스핀 에코기법: 딥러닝 기반 재구성의 영향)

  • Eun Joo Park;Yedaun Lee;Joonsung Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.6
    • /
    • pp.1309-1323
    • /
    • 2023
  • Purpose To assess the quality of four images obtained using single-breath-hold (SBH), single-shot fast spin-echo (SSFSE) and multiple-breath-hold (MBH) SSFSE with and without deep-learning based reconstruction (DLR) in patients with Crohn's disease. Materials and Methods This study included 61 patients who underwent MR enterography (MRE) for Crohn's disease. The following images were compared: SBH-SSFSE with (SBH-DLR) and without (SBH-conventional reconstruction [CR]) DLR and MBH-SSFSE with (MBH-DLR) and without (MBH-CR) DLR. Two radiologists independently reviewed the overall image quality, artifacts, sharpness, and motion-related signal loss using a 5-point scale. Three inflammatory parameters were evaluated in the ileum, the terminal ileum, and the colon. Moreover, the presence of a spatial misalignment was evaluated. Signal-to-noise ratio (SNR) was calculated at two locations for each sequence. Results DLR significantly improved the image quality, artifacts, and sharpness of the SBH images. No significant differences in scores between MBH-CR and SBH-DLR were detected. SBH-DLR had the highest SNR (p < 0.001). The inter-reader agreement for inflammatory parameters was good to excellent (κ = 0.76-0.95) and the inter-sequence agreement was nearly perfect (κ = 0.92-0.94). Misalignment artifacts were observed more frequently in the MBH images than in the SBH images (p < 0.001). Conclusion SBH-DLR demonstrated equivalent quality and performance compared to MBH-CR. Furthermore, it can be acquired in less than half the time, without multiple BHs and reduce slice misalignments.

Building practical treatment protocol by comparing the effect of adjustment between Thompson Terminal Technique and Exercise in malpositioned pelvic which induces imbalance of body (골반변위에 따른 신체 불균형에 대한 톰슨터미널테크닉과 운동요법의 교정 효과비교분석을 통한 임상치료프로토콜의 구성)

  • Park, Joon-Ki;Choi, Eun-Seok;Kim, Min-Jung;Lee, Man-Su;Lee, Min-Sun
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.445-457
    • /
    • 2016
  • The purpose of the study is to provide frame work of efficient diagnostic and treatment protocol for the people with malpositioned pelvic which causes imbalance of body. Study subjects were grouped as experimental, comparison and control group. Each group consisted of five men and five women randomly assigned. Experimental group was to be tested with Thompson Terminal Technique, its corrective effect and the effect of maintaining the treatment. There were 43.01%p difference in effectiveness of the applied technique between Thompson Terminal Technique and Muscle Energy Technique. It indicates that Thompson Terminal Technique is more effective in treating pelvic misalignment than Muscle Energy Technique. As a result, the use of chiropractic and resistance exercises is proven to be effective for treating the imbalance of body. Also, to maximize the effect of treatment, it is preferable to apply Muscle Energy Technique after applying the Thompson Terminal Technique.

Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes

  • Lee, Seung Eun;Kim, Eun Young;Choi, Hyun Yong;Moon, Jeremiah Jiman;Park, Min Jee;Lee, Jun Beom;Jeong, Chang Jin;Park, Se Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.635-647
    • /
    • 2014
  • Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; $44h+10{\mu}M$ rapamycin/24 h, $47.52{\pm}5.68$) or control oocytes (44 h IVM; $42.14{\pm}4.40$) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, $22.04{\pm}5.68$) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes.

Effect of Anteromedial Cortex Oblique Angle on Change of Tibial Posterior Slope Angle in High Tibial Osteotomy Using Computer Assisted Surgery (CAS) (Computer Assisted Surgery(CAS)를 이용한 개방형 근위경골절골술 시 전내측피질골경사각이 경골후방경사각에 미치는 영향)

  • Lee, Ho-Sang;Kim, Jay-Jung;Wang, Joon-Ho;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.351-361
    • /
    • 2012
  • The leading surgical method for correcting the misalignment of the varus and valgus in the knee joint is the high tibial osteotomy (HTO). In the opening wedge HTO (OWHTO), there is no concern about damaging the peroneal nerve on the lateral tibia of the proximal fibula. OWHTO has been the preferred choice, as the opening of the correction angle can be modulated during the operation. The correction of the varus and valgus on the coronal plane are performed adroitly. Nevertheless, there have been numerous reports of unintended changes in the medial tibial plateau and posterior slope angle (PSA). The authors have developed an HTO method using computer-assisted surgery with the aim of addressing the abovementioned problems from an engineer's perspective. CT images of the high tibia were reconstructed three-dimensionally, and a virtual osteotomy was performed on a computer. In addition, this study recommends a surgical method that does not cause changes in the PSA after OWHTO. The results of the study are expected to suggest a clear relationship between the anteromedial cortex oblique angle of each patient and the PSA, and an optimal PSA selection method for individuals.

Method of Measuring Color Difference Between Images using Corresponding Points and Histograms (대응점 및 히스토그램을 이용한 영상 간의 컬러 차이 측정 기법)

  • Hwang, Young-Bae;Kim, Je-Woo;Choi, Byeong-Ho
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.305-315
    • /
    • 2012
  • Color correction between two or multiple images is very crucial for the development of subsequent algorithms and stereoscopic 3D camera system. Even though various color correction methods are proposed recently, there are few methods for measuring the performance of these methods. In addition, when two images have view variation by camera positions, previous methods for the performance measurement may not be appropriate. In this paper, we propose a method of measuring color difference between corresponding images for color correction. This method finds matching points that have the same colors between two scenes to consider the view variation by correspondence searches. Then, we calculate statistics from neighbor regions of these matching points to measure color difference. From this approach, we can consider misalignment of corresponding points contrary to conventional geometric transformation by a single homography. To handle the case that matching points cannot cover the whole regions, we calculate statistics of color difference from the whole image regions. Finally, the color difference is computed by the weighted summation between correspondence based and the whole region based approaches. This weight is determined by calculating the ratio of occupying regions by correspondence based color comparison.

A Shape Control of Welded Joints to Improve Fatigue Strength (피로강도 향상을 위한 용접이음부의 형상제어에 관한 연구)

  • Kang, Chang Ib;Kook, Seung Kyu;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.479-492
    • /
    • 2004
  • When U-ribs of steel deck plates are connected at the field, overhead welding should be done with backing strips. Misalignments may occur and lead to eccentric moments as well as high stress concentrations at welded joints. In this study, stress analyses and fatigue tests were carried out. Stress analyses for U-ribs' welded joints with backing strips were performed with different misalignments, root shapes, root gaps, and backing strip sizes. From the stress analyses, the stress concentration factors increased with increasing misalignments and root gaps. With the fixed misalignments and root gaps, the stress concentration factors obtained in the case of the semi-circle root shape were lower than those in the case of the right-angle root shape. It was verified that backing strip sizes have little influence on stress concentration factors. The fatigue tests for U-ribs' welded joints with backing strips indicated that increased misalignments shorten fatigue life drastically and cracks usually initiate at the root of the base metal and are propagated to the weld bead surface. Based on the results of the stress analyses, root-shape control methods were developed to mitigate stress concentration by changing welding condition control, radius curvature, and flank angle.

A Conceptual Design on Training Simulator of the Special Railway Vehicle for Multiple Tie Tamper (궤도보수 특수철도차량 탬퍼 모의훈련연습기의 개념설계)

  • Ahn, Seung-Ho;Kang, Jeong Hyung;Kim, Chul Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.430-436
    • /
    • 2018
  • Special railway vehicles for track maintenance are equipped with a tamping device that adjusts various track trajectories to reduce the vibration of rolling stock and improve ride quality during trains passing over a track. The development of a simulator that can confirm the error of the actual tamping work is important for reducing human error in the linearization of the track misalignment. In this study, to improve the reality and training effect of conventional 2D simulator, 3D simulator modeling was implemented for tamping work of special railway vehicles in virtual space. The problem of buffering during high screen quality of tamping work was solved using the Unwrap UVW mapping technique of a low polygon extracted from high quality polygon modeling. The human error in the training of the tamping work was detected by the principle of circle and square collision when the tamping tyne and the sleeper collided. In addition, vibration of the driving chair was generated at the same time as the collision, and the number of the sleeper strikes is displayed on the simulator exercise screen. Owing to the scattering of railway ballast protruding from the sleepers, which had a serious effect on the safety of the vehicle, the gravel bouncing effect of the tamping unit was applied.

Design of the Active Optical Compensation Movements for Image Stabilization of Small Satellite (소형 위성 영상안정화를 위한 능동형 광학 보정장치 설계)

  • Hwang, Jai Hyuk;Yang, Ji Youn;Park, Jean Ho;Jo, Jeong Bin;Kang, Myoung Soo;Bae, Jae Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.472-478
    • /
    • 2015
  • This paper describes the design of the active optical compensation movements(at focal plane, secondary mirror) for the image stabilization of a small satellite camera. The movements can correct optical misalignment on-line and directly compensate vibration disturbances in the focal plane. Since the devices are installed inside the space camera, it has an remarkable advantage to deal with the structural deformation of a space camera effectively. In this paper, the requirements of the active optical compensation movements for 1m GSD small satellite camera have been analyzed. Based on the established requirements, the design of the active compensation movements have been conducted. The designed active optical compensation system can control 5 axes movements independently to compensate micro-vibration disturbances in the focal plane and to refocus the optical misaligned satellite camera.

Automatic Lower Extremity Vessel Extraction based on Bone Elimination Technique in CT Angiography Images (CT 혈관 조영 영상에서 뼈 소거법 기반의 하지 혈관 자동 추출)

  • Kim, Soo-Kyung;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.967-976
    • /
    • 2009
  • In this paper, we propose an automatic lower extremity vessel extraction based on rigid registration and bone elimination techniques in CT and CT angiography images. First, automatic partitioning of the lower extremity based on the anatomy is proposed to consider the local movement of the bone. Second, rigid registration based on distance map is performed to estimate the movement of the bone between CT and CT angiography images. Third, bone elimination and vessel masking techniques are proposed to remove bones in CT angiography image and to prevent the vessel near to bone from eroding. Fourth, post-processing based on vessel tracking is proposed to reduce the effect of misalignment and noises like a cartilage. For the evaluation of our method, we performed the visual inspection, accuracy measures and processing time. For visual inspection, the results of applying general subtraction, registered subtraction and proposed method are compared using volume rendering and maximum intensity projection. For accuracy evaluation, intensity distributions of CT angiography image, subtraction based method and proposed method are analyzed. Experimental result shows that bones are accurately eliminated and vessels are robustly extracted without the loss of other structure. The total processing time of thirteen patient datasets was 40 seconds on average.