• Title/Summary/Keyword: Mirror-image

Search Result 382, Processing Time 0.027 seconds

A CMOS Bandgap Reference Voltage/Current Bias Generator And Its Responses for Temperature and Radiation (CMOS Bandgap 기준 전압/전류 발생기 및 방사능 응답)

  • Lim, Gyu-Ho;Yu, Seong-Han;Heo, Jin-Seok;Kim, Kwang-Hyun;Jeon, Sung-Chae;Huh, Young;Kim, Young-Hee;Cho, Gyu-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1093-1096
    • /
    • 2003
  • 본 논문에서는, CMOS APS Image Sensor 내에 포함되어 회로의 면적을 줄인 새롭게 제안된 CMOS Bandgap Reference Bias Generator (BGR)를 온도 및 방사능에 대한 응답을 실험하였다. 제안된 BGR 회로의 설계 목표는 V/sub DD/는 2.5V이상이고, V/sub ref/는 0.75V ± 0.5mV 마진을 가지게 하는 것이다. 제안된 BGR회로는 Level Shifter를 갖는 Differential OP-amp단과 Feedback-Loop를 가지는 Cascode Current Mirror를 사용하여 저전압에서도 동작을 가능하게 하였으며, 높은 출력저항 특성을 가지도록 하였다. 제안된 BGR회로는 하이닉스 0.18㎛ ( triple well two-poly five-metal ) CMOS 공정을 이용하여 Test Chip을 제작하였다. 온도의 변화와 Co-60 노출조건 하에서 Total ionization dose (TID) effect된 BGR회로의 V/sub ref/를 측정하여, 이를 평가하였다. 온도에 대한 반응은, 25℃ 일 때의 V/sub ref/에 대해, 각각 45 ℃에서 0.128%. 70℃에서 0.768% 변화하였다. 그리고 온도가 25℃일 때 50krad와 100krad의 방사능을 조사 하였을 경우, V/sub ref/는 각각 2.466%, 그리고 4.612% 변화하였다.

  • PDF

Customized Cranioplasty Implants Using Three-Dimensional Printers and Polymethyl-Methacrylate Casting

  • Kim, Bum-Joon;Hong, Ki-Sun;Park, Kyung-Jae;Park, Dong-Hyuk;Chung, Yong-Gu;Kang, Shin-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.6
    • /
    • pp.541-546
    • /
    • 2012
  • Objective : The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. Methods : A total of 16 patients with large skull defects (>100 $cm^2$) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. Results : The median operation time was $184.36{\pm}26.07$ minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Conclusion : Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects.

Application of electrical resistivity in determining diagenetic stage of deep-sea carbonate sediments : A new variable (深海底 炭酸염 堆積物의 續成作용의 程度를 決定할 수 있는 새로운 變數로서 의 電氣 抵抗度의 應용 可能性)

  • 김대철
    • 한국해양학회지
    • /
    • v.21 no.2
    • /
    • pp.92-100
    • /
    • 1986
  • Laboratory investigations of physical (density and porosity), acoustic (velocity and velocity anisotropy), and electrical (resistivity and resistivity anisotropy) properties in deep-sea carbonate sequences at DSDPsites 288 and 289 in the western equatorial Pacific were made and correlated as a function of diagenesis. Profile of resistivity shows almost a mirror image of velocity indicating that electrical resistivity can be a useful variable to determine the diagenetic stage. Some fluctuations in acoustic and electrical properties near the zones of cherty and siliceous limestones for both sites imply significant changes in pore geometry due to interbedded silica. The significantly reduced pore throat size by the presence of silica which provides excess calcium carbonate to adjacent pore spaces is partly responsible for several jumps in acoustic and electrical properties of the zones. These observed geophysical data are interpreted as the result of silica diagenesis influencing carbonate diagenesis.

  • PDF

A Study on the Design Method of the Reinforced Earth Structures Considering Compaction Induced Stresses (다짐 유발응력을 고려한 보강토 설계방법에 관한 연구)

  • 임철웅;백영식
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.5-16
    • /
    • 1992
  • The main purpose of this the sutdy is to develop the reinforced earth structure design method considering induced stresses and deflections resulting from placement and compaction of soil. In this paper, the new reinforcement Geolog developed by the author is also introduced which is being used as one of the effective earth reinforcing structure against compaction induced stresses. This study adopted the Seed's bilinear model in the estimation of the com paction induced stresses and compute the peak lateral stresses during compaction by doubled Boussinessq's elastic solution of mirror image theory, thereafter, calculate the residual compaction induced lateral stresses from the above peak lateral stress by the residual fraction. It is considered to be reasonable that the compaction induced stresses be added to the lateral earth pressures estimated from conventional gravity analysis considering the actual stresses during service life of the structures. "GEOLOG", a composite of steel bar and attached concrete stopper is found to be effective against tension and pull - out failure. In this paper, the design method considering the compaction induced stresses and the effect of Geolog reinforcement is suggested for the remforced earth structures where backkfill settlement on displacements are not allowed as in the cases of the bridge abutments or double faced reinforcement earth structures.tructures.

  • PDF

Design and fabrication of a holographic scanner using the ray tracing method (광선 추적을 이용한 홀로그래픽 스캐너의 설계 및 제작)

  • 김종재;정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.107-113
    • /
    • 1999
  • Low-aberration holographic scanners that eliminate the need for lenses and mirrors promise to greatly reduce the cost of laser printers and image scanners. In this study, a holographic optical element that can simultaneously scan and focus a laser beam is designed with analytic ray tracing method. An analytic and experimental work is conducted in which we investigated the hologram structure and hologon configuration for linear aberration-free scanning. For a prototype scanner, a He-Ne laser is used to manufacture and reconstruct the hologram, and the measured bow is about $\pm$133$\mu\textrm{m}$ and spot size(half-intensity beamwidth) in under 100$\mu\textrm{m}$ for a 300 mm scan length without using a correcting lens or mirror. The diffraction efficiency is about 55$\pm$5%, which is acceptably flat. The experimentally measured results agrees with the computed values. From this fact, we can conclude that the computed results using ray tracing method are practical and useful values, and have a potential for use in high resolution laser printers.

  • PDF

AUTO-GUIDING SYSTEM FOR CQUEAN (CAMERA FOR QUASARS IN EARLY UNIVERSE)

  • Kim, Eun-Bin;Park, Won-Kee;Jeong, Hyeon-Ju;Kim, Jin-Young;Kuehne, John;Kim, Dong-Han;Kim, Han-Geun;Odoms, Peter S.;Chang, Seung-Hyuk;Im, Myung-Shin;Pak, Soo-Jong
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.4
    • /
    • pp.115-123
    • /
    • 2011
  • To perform imaging observations of optically red objects such as high redshift quasars and brown dwarfs, the Center for the Exploration of the Origin of the Universe (CEOU) recently developed an optical CCD camera, Camera for QUasars in EArly uNiverse (CQUEAN), which is sensitive at 0.7-1.1 ${\mu}m$. To enable observations with long exposures, we develop an auto-guiding system for CQUEAN. This system consists of an off-axis mirror, a baffle, a CCD camera, a motor and a differential decelerator. To increase the number of available guiding stars, we design a rotating mechanism for the off-axis guiding camera. The guiding field can be scanned along the 10 arcmin ring offset from the optical axis of the telescope. Combined with the auto-guiding software of the McDonald Observatory, we confirm that a stable image can be obtained with an exposure time as long as 1200 seconds.

Use of 3D Printing Model for the Management of Fibrous Dysplasia: Preliminary Case Study

  • Choi, Jong-Woo;Jeong, Woo Shik
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.36-38
    • /
    • 2016
  • Fibrous dysplasia is a relatively rare disease but the management would be quite challenging. Because this is not a malignant tumor, the preservation of the facial contour and the various functions seems to be important in treatment planning. Until now the facial bone reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for facial bone reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile, various types of allogenic and alloplastic materials have been also used. However, facial bone reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original maxillary anatomy as possible using the 3D printing model, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we molded Titanium mesh to reconstruct three-dimensional maxillary structure during the operation. This prefabricated Titanium-mesh implant was then inserted onto the defected maxilla and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be successful in this patient. Individualized approach for each patient could be an ideal way to restore the facial bone.

3D Printed Titanium Implant for the Skull Reconstruction: A Preliminary Case Study

  • Choi, Jong-Woo;Ahn, Jae-Sung
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.99-102
    • /
    • 2014
  • The skull defect can be made after the trauma, oncologic problems or neurosurgery. The skull reconstruction has been the challenging issue in craniofacial fields for a long time. So far the skull reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for skull reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile various types of allogenic and alloplastic materials have been also used. However, skull reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original skull anatomy as possible using the 3D printed titanium implant, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we fabricated Titanium implant to reconstruct three-dimensional orbital structure in advance, using the 3D printer. This prefabricated Titanium-implant was then inserted onto the defected skull and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the traumatic patients in near future.

Optical Encryption of Binary Information using 2-step Phase-shifting Digital Holography (2-단계 위상 천이 디지털 홀로그래피를 이용한 이진 정보 광 암호화 기법)

  • Byun, Hyun-Joong;Gil, Sang-Keun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.401-411
    • /
    • 2006
  • We propose an optical encryption/decryption technique for a security system based on 2-step phase-shifting digital holography. Phase-shilling digital holography is used for recording phase and amplitude information on a CCD device. 2-step phase-shifting is implemented by moving the PZT mirror with phase step of 0 or ${\pi}/2$. The binary data and the key are expressed with random code and random phase patterns. The digital hologram is a Fourier transform hologram and is recorded on CCD with 256 gray level quantization. We remove the DC term of the digital hologram fur data reconstruction, which is essential to reconstruct the original binary input data/image. The error evaluation fer the decrypted binary data is analyzed. One of errors is a quantization error in detecting the hologram intensity on CCD, and the other is generated from decrypting the data with the incorrect key. The technique using 2-step phase-shifting holography is more efficient than a 4-step method because 2-step phase-shifting holography system uses less data than the 4-step method for data storage or transmission. The simulation shows that the proposed technique gives good results fur the optical encryption of binary information.

A study on the ultra precision machining of free-form molds for advanced head-up display device (첨단 헤드업 디스플레이 장치용 비구면 자유형상 금형의 초정밀 가공에 관한 연구)

  • Park, Young-Durk;Jang, Taesuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.290-296
    • /
    • 2019
  • Head-up displays for vehicles play an important role in displaying various information about the safety and convenience of driving on the windshield of the vehicle. In this study, ultra-precision machining was performed and evaluated as a method for machining a large-area aspheric free-form mirror that is applicable to augmented reality technology. Precision diamond cutting is highly accurate and suitable for the production of advanced parts with excellent surface integrity, low surface roughness, and low residual stress. By using an aspheric free-form mold, it is possible to improve the optical transfer function, reduce the distortion path, and realize a special image field curvature. To make such a mold, the diamond cutting method was used, and the result was evaluated using an aspherical shape-measuring machine. As a result, it was possible to the mold with shape accuracy (PV) below $1{\mu}m$ and surface roughness (Ra) below $0.02{\mu}m$.