• Title/Summary/Keyword: Mirror like surface

Search Result 69, Processing Time 0.033 seconds

Growth of Large Scale CdTe(400) Thin Films by MOCVD (MOCVD를 이용한 대면적 CdTe 단결정 박막성장)

  • Kim, Kwang-Chon;Jung, Kyoo-Ho;You, Hyun-Woo;Yim, Ju-Hyuk;Kim, Hyun-Jae;Kim, Jin-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.343-346
    • /
    • 2010
  • We have investigated growth of CdTe thin films by using (As, GaAs) buffer layers for application of large scale IR focal plane arrays(IFPAs). Buffer layers were grown by molecular beam epitaxy(MBE), which reduced the lattice mismatch of CdTe/Si and prevented native oxide on Si substrates. CdTe thin films were grown by metal organic chemical deposition system(MOCVD). As a result, polycrystalline CdTe films were grown on Si(100) and arsenic coated-Si(100) substrate. In other case, single crystalline CdTe(400) thin film was grown on GaAs coated-Si(100) substrate. Moreover, we observed hillock structure and mirror like surface on the (400) orientated epitaxial CdTe thin film.

Crystal growth of 3C-SiC on Si(100) Wafers (Si(100)기판상에 3C-SiC결정성장)

  • Chung, Yun-Sik;Chung, Gwiy-Sang;Nishino, Shigehiro
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1593-1595
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) wafers up to a thickness of 4.3 ${\mu}m$ by APCVD method using HMDS(hexamethyildisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was 4.3 ${\mu}m/hr$. The 3C-SiC epitaxial films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near 796 $cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The hetero-epitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra($2{\theta}=41.5^{\circ}$).

  • PDF

On-Road Succeeding Vehicle Detection using Characteristic Visual Features (시각적 특징들을 이용한 도로 상의 후방 추종 차량 인식)

  • Adhikari, Shyam Prasad;Cho, Hi-Tek;Yoo, Hyeon-Joong;Yang, Chang-Ju;Kim, Hyong-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.636-644
    • /
    • 2010
  • A method for the detection of on-road succeeding vehicles using visual characteristic features like horizontal edges, shadow, symmetry and intensity is proposed. The proposed method uses the prominent horizontal edges along with the shadow under the vehicle to generate an initial estimate of the vehicle-road surface contact. Fast symmetry detection, utilizing the edge pixels, is then performed to detect the presence of vertically symmetric object, possibly vehicle, in the region above the initially estimated vehicle-road surface contact. A window defined by the horizontal and the vertical line obtained from above along with local perspective information provides a narrow region for the final search of the vehicle. A bounding box around the vehicle is extracted from the horizontal edges, symmetry histogram and a proposed squared difference of intensity measure. Experiments have been performed on natural traffic scenes obtained from a camera mounted on the side view mirror of a host vehicle demonstrate good and reliable performance of the proposed method.

Preparation of buffer layers for YBCO coated conductors and the properties (YBCO Coated Conductor용 버퍼총의 제조 및 특성)

  • 김찬중;홍계원;박해웅;김호진;지봉기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.98-104
    • /
    • 2002
  • CeO$_2$ and NiO buffers for YBCO coated conductors were deposited on biaxially textured Ni substrate by metalorganic chemical vapor deposition(MOCVD) and the deposition behavior were investigated. The degree of texture of deposited CeO$_2$ and NiO films was strongly dependent on the deposition temperature(T$\sub$d/) and oxygen partial pressure(P$\sub$O$_2$/). ($\ell$00) textured films were well deposited at specific deposition temperatures and oxygen partial pressures. The in-plane and out of plane textures estimated form the full width half maximum of the pole figure peaks were less than 10$^{\circ}$. The surface morphology showed that the CeO$_2$ films consisted of columnar grains grown normal to the Ni substrates, while NiO films were slate and clean like a mirror. The surface roughness of both films estimated by atomic force microscopy(AFM) were as smooth as 3-10 m. The growth rate of the films is much faster than that of other physical deposition methods.

  • PDF

Physical Characteristics of Polycrystalline 3C-SiC Thin Films Grown by LPCVD (LPCVD로 성장된 다결정 3C-SiC 박막의 물리적 특성)

  • Chung Gwiy-Sang;Kim Kang-San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.732-736
    • /
    • 2006
  • This paper describes the physical characterizations of polycrystalline 3C-SiC thin films heteroepitaxially grown on Si wafers with thermal oxide, In this work, the 3C-SiC film was deposited by LPCVD (low pressure chemical vapor deposition) method using single precursor 1, 3-disilabutane $(DSB:\;H_3Si-CH_2-SiH_2-CH_3)\;at\;850^{\circ}C$. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_2$ were measured by SEM (scanning electron microscope). Finally, residual strain was investigated by Raman scattering and a peak of the energy level was less than other type SiC films, From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror, and low defect and strain. Therefore, the polycrystalline 3C-SiC is suitable for harsh environment MEMS (Micro-Electro-Mechanical-Systems) applications.

Growth of Polycrystalline 3C-SiC Thin Films using HMDS Single Precursor (HMDS 단일 전구체를 이용한 다결정 3C-SiC 박막 성장)

  • Chug, Gwiy-Sang;Kim, Kang-San;Han, Ki-Bong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.156-161
    • /
    • 2007
  • This paper describes the characteristics of polycrystalline ${\beta}$ or 3C (cubic)-SiC (silicon carbide) thin films heteroepitaxailly grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC film was deposited by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane: $Si_{2}(CH_{3}_{6})$ single precursor. The deposition was performed under various conditions to determine the optimized growth conditions. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_{2}$ were measured by SEM (scanning electron microscope). Finally, depth profiling was invesigated by GDS (glow discharge spectrometer) for component ratios analysis of Si and C according to the grown 3C-SiC film thickness. From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therfore, the poly 3C-SiC thin film is suitable for extreme environment, Bio and RF MEMS applications in conjunction with Si micromaching.

The Study on the Machining Characteristics of 300mm Wafer Polishing for Optimal Machining Condition (최적 가공 조건 선정을 위한 300mm 웨이퍼 폴리싱의 가공특성 연구)

  • Won, Jong-Koo;Lee, Jung-Taik;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • In recent years, developments in the semiconductor and electronic industries have brought a rapid increase in the use of large size silicon wafer. For further improvement of the ultra precision surface and flatness of Si wafer necessary to high density ULSI, it is known that polishing is very important. However, most of these investigation was experiment less than 300mm diameter. Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study reports the machining variables that has major influence on the characteristic of wafer polishing. It was adapted to polishing pressure, machining speed, and the slurry mix ratio, the optimum condition is selected by ultra precision wafer polishing using load cell and infrared temperature sensor. The optimum machining condition is selected a result data that use a pressure and table speed data. By using optimum condition, it achieves a ultra precision mirror like surface.

A Study on Polishing of Grooved Surface by the Second-Generation Magnetic Abrasive Polishing (2 세대 자기연마를 이용한 미세 그루브형상 표면가공에 관한 연구)

  • Kim, Sang-Oh;Lee, Sung-Ho;Kawk, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1641-1646
    • /
    • 2011
  • The second-generation magnetic abrasive polishing is one of the nontraditional machining technologies newly developed. Because of the flexibility effect in magnetic abrasive polishing, the precise and mirror like surface can be obtained during this process. In this study, magnetic abrasive polishing process was applied in small grooved surface. As a result, it was seen that the flexible magnetic abrasive tool was effective to remove burrs on the edge of the groove. However, the efficiency of magnetic abrasive polishing at the slot was very low according to increasing depth and width of slot. So, correlation between geometric parameters, such as the depth and width, and surface roughness was evaluated and the minimum width for suitable polishing was found by experimental results.

Biological Applications of White Light Scanning Interferometry (백색광 주사간섭계의 생물학적 응용)

  • Kim, Ki-Woo
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.223-228
    • /
    • 2011
  • White light scanning interferometry has been employed to analyze surface features of diverse specimens. Long established in the field of materials engineering, the technique provides quantitative three-dimensional data as well as qualitative morphological images. It uses white light that is split and reflected from a reference mirror and an object. Merged together, the light generates interference patterns representing topographical contours of the object surface. The amplitude of the z-axis data is differentiated by gray scale. The technique allows the rapid, noncontact, and wide-field measurements for morphometry of biological specimens including chondrocytes, tooth enamel, and plant leaves. Quantification of the dimension of surface structures such as width, length, and elevation angle could be achievable by white light scanning interferometry. The light reflection from plant leaves has been assumed to be sufficient for the technique. Without special specimen preparations like conductive metal coating, the technique can be increasingly used for quantitative three-dimensional surface measurements of biological specimens.

Study on Performance Improvement in Magnetic Abrasive Polishing Assisted by Silicone Gel Medium (실리콘 겔에 의한 자기연마가공의 성능 향상에 관한 연구)

  • Kim, Sang-Oh;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1499-1505
    • /
    • 2010
  • In general, magnetic abrasive polishing can be used to effectively produce a mirror-like surface; however, industrial applications of this process involve some unsolved problems. For example, the polishing efficiency is low, and the used abrasives have to be treated. In this study, which is aimed at solving these problems, a novel medium of silicone gel, consisting of ferromagnetic particles and abrasives, is developed, and the effect of this medium is assessed on the basis of Taguchi's experimental method. The workpiece is a tungsten carbide steel and the surface roughness after magnetic abrasive polishing using the silicone gel is evaluated.