• Title/Summary/Keyword: Minkowski Pythagorean hodograph curves

Search Result 6, Processing Time 0.026 seconds

CHARACTERIZATION OF MINKOWSKI PYTHAGOREAN-HODOGRAPH CURVES

  • Lee, Sun-Hong;Kim, Gwang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.521-528
    • /
    • 2007
  • We present a new proof of the characterization theorem for Minkowski Pythagorean-hodograph curves in the Minkowski spaces $\mathbf{R}^{n+1,m}$. For an polynomial curves $\mathbf{s}(t)=(x_1(t),...,\;x_{n+m}(t))$, we also find Minkowski Pythagorean-hodograph curves $\mathbf{r}(t)=(x_0(t),\;x_1(t),...,\;x_{n+m}(t))$. In case m=0, Minkowski Pythagorean-hodograph curves become Pythagorean-hodograph curves in the Euclidean spaces $\mathbf{R}^{n+1}$ and Theorems in this paper hold for these Pythagorean-hodograph curves.

HIGHER DIMENSIONAL MINKOWSKI PYTHAGOREAN HODOGRAPH CURVES

  • Kim, Gwang-Il;Lee, Sun-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.405-413
    • /
    • 2004
  • Rational parameterization of curves and surfaces is one of the main topics in computer-aided geometric design because of their computational advantages. Pythagorean hodograph (PH) curves and Minkowski Pythagorean hodograph (MPH) curves have attracted many researcher's interest because they provide for rational representation of their offset curves in Euclidean space and Minkowski space, respectively. In [10], Kim presented the characterization of the PH curves in the Euclidean space and analyzed the relation between the class of PH curves and the class of rational curves. In this paper, we extend the characterization of PH curves in [10] into that of MPH curves in the general Minkowski space and consider some generalized MPH curves satisfying this characterization.

PYTHAGOREAN-HODOGRAPH CURVES IN THE MINKOWSKI PLANE AND SURFACES OF REVOLUTION

  • Kim, Gwang-Il;Lee, Sun-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.121-133
    • /
    • 2008
  • In this article, we define Minkowski Pythagorean-hodograph (MPH) curves in the Minkowski plane $\mathbb{R}^{1,1}$ and obtain $C^1$ Hermite interpolations for MPH quintics in the Minkowski plane $\mathbb{R}^{1,1}$. We also have the envelope curves of MPH curves, and make surfaces of revolution with exact rational offsets. In addition, we present an example of $C^1$ Hermite interpolations for MPH rational curves in $\mathbb{R}^{2,1}$ from those in $\mathbb{R}^{1,1}$ and a suitable MPH preserving mapping.

  • PDF

Root Test for Plane Polynomial Pythagorean Hodograph Curves and It's Application (평면 다항식 PH 곡선에 대한 근을 이용한 판정법과 그 응용)

  • Kim, Gwang Il
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.1
    • /
    • pp.37-50
    • /
    • 2000
  • Using the complex formulation of plane curves which R. T. Farouki introduced, we can identify any plane polynomial curve with only a polynomial with complex coefficients. In this paper, using the well-known fundamental theorem of algebra, we completely factorize the polynomial over the complex number field C and from the completely factorized form of the polynomial, we find a new necessary and sufficient condition for a plane polynomial curve to be a Pythagorean-hodograph curve, obseving the set of all roots of the complex polynomial corresponding to the plane polynomial curve. Applying this method to space polynomial curves in the three dimensional Minkowski space $R^{2,1}$, we also find the necessary and sufficient condition for a polynomial curve in $R^{2,1}$ to be a PH curve in a new finer form and characterize all possible curves completely.

  • PDF

$C^1$ HERMITE INTERPOLATION WITH MPH QUARTICS USING THE SPEED REPARAMETRIZATION METHOD

  • Kim, Gwang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.131-141
    • /
    • 2010
  • In this paper, we propose a new method to obtain $C^1$ MPH quartic Hermite interpolants generically for any $C^1$ Hermite data, by using the speed raparametrization method introduced in [16]. We show that, by this method, without extraordinary processes ($C^{\frac{1}{2}}$ Hermite interpolation introduced in [13]) for non-admissible cases, we are always able to find $C^1$ Hermite interpolants for any $C^1$ Hermite data generically, whether it is admissible or not.

C1 HERMITE INTERPOLATION WITH MPH CURVES USING PH-MPH TRANSITIVE MAPPINGS

  • Kim, Gwangil;Kong, Jae Hoon;Lee, Hyun Chol
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.805-823
    • /
    • 2019
  • We introduce polynomial PH-MPH transitive mappings which transform planar PH curves to MPH curves in ${\mathbb{R}}^{2,1}$, and prove that parameterizations of Enneper surfaces of the 1st and the 2nd kind and conjugates of Enneper surfaces of the 2nd kind are PH-MPH transitive. We show how to solve $C^1$ Hermite interpolation problems in ${\mathbb{R}}^{2,1}$, for an admissible $C^1$ Hermite data-set, by using the parametrization of Enneper surfaces of the 1st kind. We also show that we can obtain interpolants for at least some inadmissible data-sets by using MPH biarcs on Enneper surfaces of the 1st kind.