• Title/Summary/Keyword: Minimum weight design

Search Result 353, Processing Time 0.028 seconds

Design of a Height Adjustable Bunker Bed Using a Gas Spring (가스 스프링을 이용한 높이조절 벙커침대 설계)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • A bunker bed is a type of furniture that efficiently utilizes a narrow indoor space by having a high bed and using the empty space below as a living and storage space. The demand for multi-purpose furniture is increasing due to the recent increase in single-person households and wide-spread shared accommodation. According to the consumer research, one of the major drawbacks of a bunker bed was to get on and off the bed through a ladder or stairs. In order to overcome these problems, it was confirmed that the height adjustment function that can easily adjust the minimum and maximum heights of the bed was necessary. In this study, a height adjustable bunker bed was designed by using a gas spring that generates a repulsive force by the compressed gas inside. The design process consisted of the following three steps: Firstly, the hysteresis characteristics due to a friction and spring constant of a commercial gas spring were confirmed by measuring the repulsive force vs. compressed displacement. Secondly, requirements of the vertical lifting force exerted on the bed against gravity force were derived. Finally, the height-adjustable bed using the four-bar link mechanism was designed with 4 parameters so that the bed weight of 60-70 kgf could be adjusted to 800 mm in height by an affordable initial operation force. The performance was verified through prototype production and the results of vertical displacement and force to move were nearly the same as designed. In addition, an electrically operated height-adjustable bed was also designed with linear actuators and the performance was proved with the prototype.

Static Behavior of Stud Shear Connector for UHPC Deck (초고성능 콘크리트 바닥판을 위한 스터드 전단연결재의 정적 거동)

  • Lee, Kyoung-Chan;Kwark, Jong-Won;Park, Sang-Hyeok;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • Typical composite girder has been composed with conventional concrete deck and steel girder. Recently, ultrahigh-performance-concrete (UHPC) deck is proposed in order to enhance durability and reduce weight of deck as well as to increase stiffness and strength of the composite girder. This study investigates that a headed stud is still compatible as a shear connector for the UHPC deck and steel girder composite beam. Twelve push-out specimens are prepared to evaluate the static strength of stud shear connectors embedded in the UHPC deck. The test program proves that the static strength of the stud shear connectors embedded in UHPC well meets with design codes described in AASHTO LRFD. Chosen experimental variables are aspect ratio of height to diameter of stud, thickness of deck and thickness of concrete cover over the head of stud. From the test program, aspect ratio and cover thickness are investigated to mitigate the regulations of the existing design codes. The minimum aspect ratio and the minimum cover thickness given in AASHTO LRFD are four and 50mm, respectively. This limitation hinders to lower the thickness of the UHPC deck. The results of the experiment program give that the aspect ratio and the cover thickness can be lower down to three and 25mm, respectively. Eurocode-4 regulates characteristic relative slip at least 6mm. However, test results show that stud shear connectors embedded in UHPC provide the characteristic relative slip only about 4mm. Therefore, another measures to increase ductility of stud should be prepared.

An Experimental Study on Joint Structures of Composite Truss Bridges (복합 트러스 교량의 연결구조에 대한 실험적 연구)

  • Shim, Chang Su;Park, Jae Sik;Kim, Kwang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.303-312
    • /
    • 2007
  • Steel box girder bridges are being commonly designed for medium-span bridges of span length. Composite truss bridges with steel diagonals instead of concrete webs can be an excellent design alternative, because it can reduce the dead weight of superstructures. One of the key issues in the design of composite truss bridges is the joint structureconnecting the diagonal steel members with the upper and lower concrete slabs. Because the connection has to carry concentrated combined loads and the design provisions for the joint are not clear, it is necessary to investigate the load transfer mechanism and the design methods for each limit state. There are various connection details according to the types of diagonal members. In this paper, the joint structure with group stud connectors welded on a gusset plate is used. Push-out tests for the group stud connectors of were performed. The test results showed that the current design codes on the ultimate strength ofthe stud connection can be used when the required minimum spacing of stud connectors is satisfied. Flexure-shear tests were conducted to verify the applicability of the design provisions for combined load effects to the strength of joint structures. To increase the pullout strength of the connection, bent studs were proposed and utilized for the edge studs in the group arrangement of the joint. The results showed that the details of the joint structure were enhanced. Thereafter, design guidelines were proposed.

Shape Optimum Design of Pultruded FRP Bridge Decks (인발성형된 FRP 바닥판의 형상 최적설계)

  • 조효남;최영민;김희성;김형열;이종순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2004
  • Due to their high strength to weight ratios and excellent durability, fiber reinforced polymer(FRP) is widely used in construction industries. In this paper, a shape optimum design of FRP bridge decks haying pultruded cellular cross-section is presented. In the problem formulation, an objective function is selected to minimize the volumes. The cross-sectional dimensions and material properties of the deck of FRP bridges are used as the design variables. On the other hand, deflection limits in the design code, material failure criteria, buckling load, minimum height, and stress are selected as the design constraints to enhance the structural performance of FRP decks. In order to efficiently treat the optimization process, the cross-sectional shape of bridge decks is assumed to be a tube shape. The optimization process utilizes an improved Genetic Algorithms incorporating indexing technique. For the structural analysis using a three-dimensional finite element, a commercial package(ABAQUS) is used. Using a computer program coded for this study, an example problem is solved and the results are presented with sensitivity analysis. The bridge consists of a deck width of 12.14m and is supported by five 40m long steel girders spaced at 2.5m. The bridge is designed to carry a standard DB-24 truck loading according to the Standard Specifications for Highway Bridges in Korea. Based on the optimum design, viable cross-sectional dimensions for FRP decks, suitable for pultrusion process are proposed.

Development of Vertical Separated Tubular Steel Pole (종방향 분할형 관형지지물 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.257-262
    • /
    • 2019
  • Lattice steel towers for overhead transmission lines have been replaced by tubular steel poles due to the visual impact of large and complex shape of truss type. Demand for tubular steel poles consisting of a single frame member continues to grow because of its advantages such as visual minimization, architectural appeal and minimal site consumptions. However, there are some constraints on the transportation and construction. As the diameter of tower base has been enlarged, it may exceed minimum height limit required to pass the tunnel in case of land transportation. Also, in a narrow place where it is not easy to secure the installation areas such as mountainous places, there might be some areas wherein it must secure a wide working space so that large vehicles and working cranes will be allowed to enter. In this paper, we presented a vertical separated tubular steel pole, which is a new type of support that can be implemented for general purpose such as mountainous areas or narrow areas to improve the issues raised by breaking away from the conventional design and fabrication methods. Technical approaches for overcoming the limit of the cross-sectional size is to separate and modularize the cross-section of the tubular steel pole designed with a size that cannot be carried or assembled, and to lighten it with a weight capable of being transported and assembled in a narrow space or mountainous area. As a result of this research, it will be possible to enter small and medium sized vehicles in locations where it is restricted to transport by large-sized vehicles. In the case of mountainous areas, it will be possible to divide it into a weight capable of being carried by a helicopter and it will be easy to adjust and fabricate it with individual modules. Furthermore, in order to break away from the traditional construction method, we proposed the equipment that can be applied to the assembly of Tubular Steel Pole without using a large crane in locations where there is no accessible road or in locations wherein large cranes cannot enter. In particular, this paper shows the movable assembling equipment and some methods that are specialized for vertical separated tubular steel pole consisting of members with reduced weight. The proposed assembly equipment is a device for assembling the body of the Tubular Steel Poles. It will be installed inside the support and the modules can be lifted by using the support itself.

The Wearing Effect of Sport Underwear -Focusing on the Loss of Weight and Amount of Sweat according to the Materials- (운동용 속옷의 착용효과 -소재별 발한량과 체중감량을 중심으로-)

  • Na, Mi-Hyang;Kim, Mi-Sun;Jung, Bock-Hee
    • Korean Journal of Human Ecology
    • /
    • v.11 no.3
    • /
    • pp.273-285
    • /
    • 2002
  • Three materials for sport underwear were manufactured by order for study, and among them, suitable material in order to perform an experiment on the effect of wearing was adopted. The results are as follows: The result of wearing an experimental clothes for sports manufactured as a foundation-type underwear for sports showed that if the same compositional materials were applied, laminating material had higher rate than that of others in the amount of sweat. Concerning relative humidity in clothes and the amount of sweat absorbed in clothes among the two kinds of materials which were produced by laminate, material 2(nylon+modal) was statistically exerts higher influence on the amount of sweat. The humidity in clothes keeps the optimal condition of 59.8%, and breast part showed the highest relative humidity. The material 2(nylon+modal) showed the highest comfortableness, the sense of warmth, humidity and voluminousness, and the sense of pressure. Follow-up survey revealed that in case of material 2, higher amount of sweat than that of the group objects in its early phase, and the amount of sweat varies from individuals. The temperature in clothes of folded parts of experimental clothes and maximum surface temperature was equivalent to that of average skin. With the lapse of time, the weight decreased of 11.03% in maximum, and 3.12% in minimum. The amount of change in the girth was greater in part of body frame than that of limbs, and especially, navel and waist part showed high decrease, and upper breast, breast and the largest part of abdomen showed relatively low decrease. The above experiment revealed that materials for suitable to the underwear for sports for loss of weight by an exercise should be made of doubled-nylon and modal, along with the laminate processing, which heightens the amount of sweat. Thus, wearing an experimental wear gave satisfaction in the view of the beauty of appearance as it did not discharge flowing secretion to the outside at the time of exercise.

  • PDF

Consideration on Ways to Reduce a Edge Pressure at Bottom Plate of Caisson Breakwaters (케이슨 방파제 바닥판 단부 지지력 저감방안에 대한 고찰)

  • Park, Woo-Sun;Lee, Byeong Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.331-339
    • /
    • 2020
  • In this study, ways to reduce the edge pressure at the bottom plate of the caisson breakwater were considered. The water depth, freeboard, design wave height and period, and the location of the center of gravity on the super-structure of the breakwater were selected as key design variables that influence the edge pressure, and analyzed how the edge pressure changes according to the change of this key variables. The pressure distribution formulae suggested in the design standard was applied for the calculation of design wave forces. Based on the wave forces, the required effective self-weight of the super-structure and the minimum width of the caisson were determined to have a safety factor of 1.2 against sliding and overturning. From the results, it was found that the edge pressure rapidly increased as the water depth increased, and could exceed the allowable bearing capacity when it reached a certain water depth which is 20 m within the analysis conditions. It was also confirmed that the edge pressure gradually increased linearly as the freeboard increased, but decreased with the increase of the wave height and period. This edge pressure could be significantly reduced up to more than 20% by moving the center of gravity of the super-structure to the seaside, which is 5% of the caisson width. Based on the analysis results and the recently conducted research results, a method was proposed to reduce the edge pressure that can be used in the design.

Consideration on Limitations of Square and Cube Root Scaled Distances in Controled Blast Design (제어발파설계에서 자승근 및 삼승근 환산거리 기법의 적용한계에 대한 고찰)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Jeong, Ju-Hwan
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.27-39
    • /
    • 2010
  • Blast design equations based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of ground vibrations. These equations represents the minimum scale distance of various recommendations for safe blasting. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). Thus, the design equations have the forms of $D/\sqrt{W}{\geq}30m/kg^{1/2}$ and $D/\sqrt[3]{W}{\geq}60m/kg^{1/3}$ in the cases of SRSD and CRSD, respectively. With these equations and known distance, we can calculate the maximum charge weight per delay that can assure the safety of nearby structures against ground vibrations. The maximum charge weights per delay, however, are in the orders of $W=O(D^2)$ and $W=O(D^3)$ for SRSD and CRSD, respectively. So, compared with SRSD, the maximum charge for CRSD increases without bound especially after the intersection point of these two charge functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, we suggest that CRSD be used within a specified distance slightly beyond the intersection point. The exact limit is up to the point, beyond which the charge difference of SRSD and CRSD begins to exceed the maximum difference between the two within the intersection point.

Design and embodiment of stable system by change of action waveform by pulsemodule special quality of pulse style$CO_2$ laser for obstetrics and gynecology (산부인과용 펄스형 $CO_2$레이저의 펄스모듈 특성과 동작파형 변화에 따른 안정된 시스템의 설계 및 구현)

  • Kim, Whi-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • [ $CO_2$ ] laser sees that is most suitable to get this effect through minimum formation damage and advantage that is root enemy of effect that happen in minimum cellular tissue depth of 0.1mm is stable living body organization or internal organs institution. Formation damage by ten can be related in formation's kind or energy density, length of evaporation time. If shorten evaporation time, surroundings cellular thermal damage 200 - because happen within 400um laser beam in rain focus sacred ground surroundings cellular tissue without vitiation me by evaporation Poe of very small floor as is clean steam can . Application is possible to vulva cuticle cousins by a paternal aunt quantity, uterine cancer, cuticle tumor by laser system that $CO_2$ laser gets into standard in obstetrics and gynecology application. Because effect that super pulse output is ten enemies of laser if uniformity one pulse durations are short almost is decreased, most of all pulse module special quality of Pulse style $CO_2$ laser for obstetrics and gynecology mode stabilization by weight very, in this research to get into short pulse duration and higher frequency density, do switching by high frequency in DC-DC Converter output DC's ripple high frequency to be changed, high frequency done current ripple amount of condenser for output filter greatly reduce can . Ripple of output approximately to Zero realization applying possible inductor realization through a special quality experiment do.

  • PDF

An Efficient Programmable Memory BIST for Dual-Port Memories (이중 포트 메모리를 위한 효율적인 프로그램 가능한 메모리 BIST)

  • Park, Young-Kyu;Han, Tae-Woo;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.55-62
    • /
    • 2012
  • The development of memory design and process technology enabled the production of high density memory. As the weight of embedded memory within aggregate Systems-On-Chips(SoC) gradually increases to 80-90% of the number of total transistors, the importance of testing embedded dual-port memories in SoC increases. This paper proposes a new micro-code based programmable memory Built-In Self-Test(PMBIST) architecture for dual-port memories that support test various test algorithms. In addition, various test algorithms including March based algorithms and dual-port memory test algorithms are efficiently programmed through the proposed algorithm instruction set. This PMBIST has an optimized hardware overhead, since test algorithm can be implemented with the minimum bits by the optimized algorithm instructions.