• Title/Summary/Keyword: Minimum weight design

Search Result 353, Processing Time 0.028 seconds

A Comparative Study on the PSO and APSO Algorithms for the Optimal Design of Planar Patch Antennas (평면형 패치 안테나의 최적설계를 위한 PSO와 APSO 알고리즘 비교 연구)

  • Kim, Koon-Tae;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1578-1583
    • /
    • 2013
  • In this paper, stochastic optimization algorithms of PSO (Particle Swarm Optimization) and APSO (Adaptive Particle Swam Optimization) are studied and compared. It is revealed that the APSO provides faster convergence and better search efficiency than the conventional PSO when they are adopted to find the global minimum of a two-dimensional function. The advantages of the APSO comes from the ability to control the inertia weight, and acceleration coefficients. To verify that the APSO is working better than the standard PSO, the design of a 10GHz microstrip patch as one of the elements of a high frequency array antenna is taken as a test-case and shows the optimized result with 5 iterations in the APSO and 28 iterations in th PSO.

Analysis of Gas-Solid Flow for the Optimum Design of Coal Splitter (입자분리기 최적 설계를 위한 다상 유동 해석)

  • Yok, Sim-Kyun;Ryu, Jae-Wook;Ik-Hyeong;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1604-1611
    • /
    • 2003
  • The experimental investigation of a coal splitter used in the 500㎿(e) boilers of fossil power plant is carried out to validate the design criteria. To predict air flow and the amount of particles at the exit, velocity and the weight of particles are measured on test planes using the coal splitter model with two-dimensional phase doppler particle analyzer and the glass fiber filter. It is found that the position of guide plate influences significantly both flow rates of gas and particle at the exit. Gas flow rate was a linear function of the guide plate, whereas particle flow rate was a exponential function of it.

A Study on efficient contact analysis and optimum support design using commercial analysis software (상용 해석 소프트웨어를 이용한 접촉문제의 효과적 해석 및 최적 지지점 설계)

  • 최주호;원준호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.437-444
    • /
    • 2004
  • In this study, an optimum support design problem is considered to minimize displacement of stacked plates under self weight condition. During the displacement analysis, several kinds of contact arise between the plates themselves and support bar. These can be easily considered if commercial analysis software, which provides capability to solve the contact problem, is used. It is found, however, that the computing time is extraordinarily long due possibly to the generality of the software and also to the ignorance of the control parameters used in the software. In this paper, the contact condition is imposed directly by the authors, while the software is used only to solve the ordinary displacement analysis problem. In this way, the computing time is decreased remarkably by more than 30 times, while yielding the same accurate results. Optimization is conducted based on this efficient analysis method to find minimum number of supporting bars using the response surface algorithm.

  • PDF

Structural Dynamic Optimization of Diesel Generator systems Using Genetic Algorithm(GA) (유전자 알고리즘을 이용한 선박용 디젤발전기 시스템의 동특성 해석 및 최적화)

  • 이영우;성활경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.99-105
    • /
    • 2000
  • For multi-body dynamic problems. especially coalescent eigenvalue problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique for structural dynamic modification using a mode modification and homologous structures design method with Genetic Algorithm(GA). In this work, the homologous structure of the resiliently mounted multi-body for marine diesel generator systems is studied and the problem is treated as a combinational optimization problem using the GA. In GA formulation, fitness is defined based on penalty function approach. That include homology, allowable stress and minimum weight of common plate.

  • PDF

High-Efficiency Light-Weight Motor Design Technique for Electric Vehicle Using Evolution Strategy ((1+1) Evolution Strategy를 이용한 유도전동기의 최적 설계)

  • Kim, M.K.;Lee, C.G.;Park, J.T.;Lee, H.B.;Jung, H.K.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.9-11
    • /
    • 1995
  • In this paper, tile squirrel case induction motors required multi-objective function are designed. As the objective function of the optimization program, we select the linear combination of loss and mass of motors by using weighting factors. Optimization process is performed by using the evolution strategy (ES). ES is the algorithm that can find the global minimum. To verify validity of the proposed method, a sample design is tried.

  • PDF

A Study on the Optimum Design of Independent Suspension Final Reduction Gear (특수차량 독립현가형 종감속기의 최적설계에 대한 연구)

  • Jo, Young-Jik;Jeon, Eeon-chan;Kang, Jung-ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.135-141
    • /
    • 2008
  • Independent suspension axle and final reduction gear for special-purpose vehicles such as a armored vehicles are almost imported in Germany etc. so, developing them is necessary to save cost. In severe condition (open fields, water surface driving, obstacle pass), special-purpose vehicles must work well. Drop box, axle and final reduction gear performed static analysis. We know that is possible weight reduction. The purpose of this paper is to find out the optimal shape of final reduction gear's case by means of response surface methodology. The response surface method is the statistical method which can be applied to the non-sensitivity based optimization. The response surface which is constructed by the least square method contains only the polynomial terms so that the global maximum and minimum points are easily obtained.

  • PDF

Modification of a Two Stage Axial Compressor of a Turboshaft Engine for Helicopters (헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계)

  • Kim, Jin-Han;Kim, Chun-Taek;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.88-95
    • /
    • 1999
  • This paper introduces the part of efforts to develop a derivative type turboshaft engine from an existing baseline engine for multi-purpose helicopters aiming at 4000 kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power from 720 hp to 840hp with minimum modification, a two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, a two stage axial compressor was designed to facilitate a flow rate of 3.04 kg/s, a pressure ratio of 2.01 and an adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

Multi-Objective Optimization of Multistory Shear Building Under Seismic Loads (지진하중을 받는 다층 뼈대구조물의 다목적 최적설계)

  • 조효남;민대홍;정봉교
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.255-262
    • /
    • 2002
  • In this paper, an improved multi-objective optimmum design method is proposed. And it is applied to steel frames under seismic loads. The multi-objective optimization problem is formulated with three optimality criteria, namely, minimum structural weight and maximum strain energy and stability. The Pareto curve can be obtained by performing the multi-objective optimization for multistory shear buildings. In order to efficiently solve the multi-objective optimization problem the decomposition method that separates both system-level and element-level is used. In addition, various techniques such as effective reanalysis technique with respect to intermediate variables and sensitivity analysis using an automatic differentiation (AD) we incorporated. Moreover, the relationship function among section properties induced from the profile is used in order to link system-level and element level. From the results of numerical investigation, it may be stated that the proposed method will lead to the more rational design compared with the conventional one.

  • PDF

An Optimal Design Algorithm for The Large-Scale Structures with Discrete Steel Sections (규격부재로 이루어진 대형 철골구조물의 최적설계를 위한 알고리즘)

  • 이환우;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.95-100
    • /
    • 1990
  • An optimization method has been developed to find the minimum weight design of steel building structures which consist of the commercially available discrete sections. In this study, an emphasis was particularly placed on the practical applicability of optimization algorithm in engineering practice. The structure Is optimized through element optimization under the element level constraints first and then, if there is any violation of structural level constraints, it is adequately compensated by the constraint error correction vector obtained through the sensitivity analysis. A scaling procedure is introduced for the problems of large violated displacement constraint. The oscillation control in the objective function is also discussed. By dividing the available H-sections into two groups based on their section characteristics, much improved relationships between section variables were obtained and used efficiently in searching the optimum section in the section table.

  • PDF

Minimum Weight Design of Ship Structure by Reanalysis Technique (재해석기법에 의한 선체 최소중량설계)

  • S.W.,Park;J.K.,Paik;I.S.,Nho;H.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.62-70
    • /
    • 1989
  • For the conduct of optimum design for such complicated and large structures as ship structure by direct structural analysis such as finite element method, it is very important problem that the process needs much computational efforts due to the repeated structural analysis. In this study, the reanalysis technique based on the modified reduced basis method is applied in the process to reduce the computing time required in repeated structural analysis. Numerical examples to simple grillage and actual ship structure are performed and applicability of reanalysis technique to structural optimization process is discussed.

  • PDF