• Title/Summary/Keyword: Minimum weight design

Search Result 353, Processing Time 0.023 seconds

Evaluation on Structure Design Sensitivity and Meta-modeling of Passive Type DSF for Offshore Plant Float-over Installation Based on Orthogonal Array Experimental Method (직교배열실험 방법 기반 해양플랜트 플로트오버 설치 공법용 수동형 DSF의 구조설계 민감도와 메타모델링 평가)

  • Lee, Dong-Jun;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.85-95
    • /
    • 2021
  • Structure design sensitivity was evaluated using the orthogonal array experimental method for passive-type deck support frame (DSF) developed for float-over installation of the offshore plant. Moreover, approximation characteristics were also reviewed based on various meta-models. The minimum weight design of the DSF is significantly important for securing both maneuvering performance and buoyancy of a ship equipped with the DSF and guaranteeing structural design safety. The performance strength of the passive type DSF was evaluated through structure analysis based on the finite element method. The thickness of main structure members was applied to design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experimental method and analysis of variance. The optimum design case was also identified from the orthogonal array experiment results. Various meta-models, such as Chebyshev orthogonal polynomial, Kriging, response surface method, and radial basis function-based neural network, were generated from the orthogonal array experiment results. The results of the orthogonal array experiment were validated using the meta-modeling results. It was found that the radial basis function-based neural network among the meta-models could approximate the design space of the passive type DSF with the highest accuracy.

Feasibility Study of High Strength Steel on Steel Bridge (고강도 강재의 강교량 적용성에 관한 연구)

  • Jeon, Jun Chang;Kim, Seok Tae;Kyung, Kab Soo;Lee, Hee Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.603-612
    • /
    • 2002
  • Numerical analyses have been carried out in order to check the applicability of high-strength steel to a medium-sized steel bridge. Using the yield strength of steel, Average Daily Truck Traffic (ADTT), and fatigue grade of structural detail as analytical parameters, the minimum weight sections that satisfy the limit states of the AASHTO LRFD design specification were determined through an optimization scheme. Likewise, the effects of the number of girders and span length on the applicability of high-strength steel were evaluated. Results show that high-strength steel may be employed in the steel bridge, since steel weight decreases with increasing yield strength regardless of the fatigue effect. Nonetheless, appropriate countermeasures against fatigue should be determined since it is a major factor in the effective use of high-strength steel in steel bridges.

System Optimization of Orthotropic Steel-Deck Bridges by Load and Resistance Factor Design (LRFD에 의한 강상판형교의 시스템 최적설계)

  • 조효남;민대홍;김현우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.262-271
    • /
    • 1998
  • Recent, more and more steel deck bridges are adopted for the design of long span bridges and the upgrading of existing concrete deck bridges, mainly because of reduced self weight, higher stiffness and efficient erection compared to concrete decks. The main objective of this study is to propose on formulation of the design optimizations to develop an optimal desist program required for optimum desist for orthotropic steel-deck bridges. The objective function of the optimization is formulated as a minimum initial cost design problem. The behavior and design constraints are formulated based on the ASD and LRFD criteria of the Korean Bridge Design Code(1996). The optimum design program developed in this study consists of two steps. In the first step the system optimization of the steel box girder bridges is carried out. And in the second step the program provided the optimum design of the orthotropic steel-deck with close ribs. In the optimal design program the analysis module for the deck optimization is based on the Pelican Esslinger method. The optimizer module of the program utilizes the ADS(Automated Desist Synthesis) routines using the optimization techniques fuor constrained optimization. From the results of real application examples, The cost effectiveness of optimum orthotropic steel-deck bridges designs based on both ASD and LRFD methods is investigated by comparing the results with those of conventional designs, and it may be concluded that the design developed in this study seems efficient and robust for the optimization of orthotropic steel-deck bridges

  • PDF

Automotive Body Design (차량 차체 설계)

  • Lee, Jeong-Ick;Kim, Byoun-Gon;Chung, Tae-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.

Optimum design of steel space truss towers under seismic effect using Jaya algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.

Calibration Method of Vehicle Weight Data from Weigh-In-Motion System According to Temperature Effects (온도의 영향에 대한 Weigh-In-Motion 시스템의 차량중량자료 보정기법)

  • Hwan, Eui-Seung;Lee, Sang-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.187-196
    • /
    • 2010
  • The purpose of this study is to develop the calibration method for temperature effects to improve the accuracy of the Weigh-In-Motion(WIM) system for collecting long-term truck weight data. WIM system was installed at a location where the truck traffic volume is high and weight data has been collected from January 2010. In this study, as a calibration measure, the first axle weight of Truck Type 10, the semi tractor-trailer is used based on the fact that the first axle weight is relatively constant, independent of the cargo weight. From this fact, calibration equations are developed from the relationship between the axle weight and the temperature(daily mean, maximum and minimum). Analysis on calibrated weight data shows adequacy of the proposed calibration method. Results of this study can be used to improve the accuracy of the WIM system and to carry out more rational design of pavement and bridge structures.

Discrete Optimum Design of Sinusoidal Corrugated Web Girder (사인형 주름웨브보의 이산화 최적구조설계)

  • Shon, Su Deok;Yoo, Mi Na;Lee, Seung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.671-682
    • /
    • 2012
  • The use of sinusoidal corrugated web girder for the box-type girders and gable steel main frames has recently been increasing very much. The reasons are that the thin web of the girder affords a significant weight reduction compared with rolled beam and welded built-up girder, and that corrugation prevents the buckling failure of the web. Improvements of the automatic fabrication process makes mass production of the corrugated web and unit possible, and applications of this girder have been extended considerably. Thus, the research for the optimum design processer considering the production data is needed practically. For doing this research, we develope the discrete optimum structural design program in consideration of production list data for the research, and the program apply to the single girder under the uniform load and the concentrated load as numerical example. We consider objective function as minimum weight of the girder, and use slenderness ratio, stress of flanges and corrugated web, and the girder deflection as the constraint functions. And also the Genetic Algorithms is adopted to search the global minimum point by using the production list as a discrete design variable. Finally, to verify the optimality of the design, we conduct a comparison of the results of the discrete optimum design with those of the continuous one, and also analyze the characteristics of the optimum cross-section.

Structural Design of an Upper Control Arm, Considering Static Strength (정강도를 고려한 상부 컨트롤 암의 구조설계)

  • Song, Byoung-Cheol;Park, Han-Seok;Kwon, Young-Min;Kim, Sung-Hwan;Park, Young-Chul;Lee, Kwon-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.190-196
    • /
    • 2009
  • This study proposes a structural design method for the upper control arm installed at the rear side of a SUV. The weight of control arm can be reduced by applying the design and material technologies. In this research, the former includes optimization technology, and the latter the technologies for selecting aluminum as a steel-substitute material. Strength assessment is the most important design criterion in the structural design of a control arm. At the proto design stage of a new control arm, FE (finite element) analysis is often utilized to predict its strength. This study considers the static strength in the optimization process. The inertia relief method for FE analysis is utilized to simulate the static loading conditions. According to the classification of structural optimization, the structural design of a control arm is included in the category of shape optimization. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint. Optimum designs are obtained by ANSYS WORKBENCH and the in-house program, EXCEL-kriging program. The optimum results determined from the in-house program are compared with those of ANSYS WORKBENCH.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Stringer Shape Optimization of Aircraft Panel Assembly Structure (항공기 패널 조립체 구조물의 스트링거 형상 최적화)

  • Kim Hyoung-Rae;Park Chan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.136-142
    • /
    • 2006
  • Optimization of the aircraft panel assembly constructed by skin and stringers is investigated. For the design of panel assembly of the aircraft structure, it is necessary to determine the best shape of the stringer which accomplishes lowest weight under the condition of no instability. A panel assembly can fail in a variety of instability modes under compression. Overall modes of flexure or torsion can occur and these can interact in a combined flexural/torsion mode. Flexure and torsion can occur symmetrically or anti-symmetrically. Local instabilities can also occur. The local instabilities considered in this paper are buckling of the free and attached flanges, the stiffener web and the inter-rivet buckling. A program is developed to find out critical load for each instability mode at the specific stringer shape. Based on the developed program, optimization is performed to find optimum stringer shape. The developed instability analysis program is not adequate for sensitivity analysis, therefore RSM (Response Surface Method) is utilized instead to model weight and instability constraints. Since the problem has many local minimum, Genetic algorithm is utilized to find global optimum.