• Title/Summary/Keyword: Minimum thickness design

Search Result 222, Processing Time 0.031 seconds

The Study on the Reflection Coating Design Scheme in the Thin-Film Silicon Solar Cell (박막 실리콘 태양전지의 반사코팅 설계기술 연구)

  • Kim, Chang-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5172-5177
    • /
    • 2011
  • This paper presents a reflection coating design scheme in the thin-film silicon solar cell. The antireflection(high reflection) coating skill is needed in the front(back) panel of the thin-film solar cell to improve an efficiency of light absorbing. In the single structure a reflectivity is changed according to the thickness of coating for antireflection scheme and its minimum value can be obtained by controlling thickness of coating. In the symmetric multi layer structure low reflectivity can be obtained in the wide wavelength range. And we also find that high reflectivity can be obtained through multi layer structure, which has alternate layers of high and low material, for high reflection scheme in the back panel.

Static Characteristic Analysis of Mechanical Face Seal Used for Boiler Feedwater Pump (보일러 급수 펌프용 미케니컬 페이스 실의 정특성 해석)

  • Kim, Dong-Wook;Jin, Sung-Sik;Kim, Jun-Ho;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.230-239
    • /
    • 2010
  • Mechanical face seal installed in boiler feedwater pump prevents leakage of working fluid using thin fluid film between stator and rotor. If the leakage of working fluid exceeds the allowable volume, serious malfunction of boiler feedwater pump will be happen. The thinner fluid film exists between stator and rotor, the less working fluid leaks out. However, if the thickness of fluid film is not enough, the wear of seal face will be increased. And it causes the decrease in life of mechanical face seal. Therefore appropriate design is necessary to maximize the performance and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to investigate the static characteristics of wavy mechanical face seals which have 4 different wavy surface profiles on rotor. As a result, opening force, leakage volume of working fluid and friction torque were obtained. For the same minimum film thickness, the static characteristics of mechanical face seal were affected by the wavy surface profile which can change the thickness of working fluid film and pressure distribution.

Parameter Tuning Algorithm for Sliding Mode Control (슬라이딩 모드 제어를 위한 인자 튜닝 알고리듬)

  • 류세희;박장현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.438-442
    • /
    • 2003
  • For an efficient sliding mode control system stability and chattering avoidance should be guaranteed. A continuation method using boundary layer is well known as one solution for this. However since not only model uncertainties and disturbances but also control task itself is variable. it is practically impossible to set controller parameters - control discontinuity, control bandwidth, boundary layer thickness - in advance. In this paper first an adaptation law of control discontinuity is introduced to assure system stability and then fuzzy logic based tuning algorithm of design parameters is applied based on monitored performance indices of tracking error, control chattering, and model precision. In the end maximum control bandwidth not exciting unmodeled dynamics and minimum control discontinuity, boundary layer thickness making system stable and free of chattering are found respectively. This eliminates control chattering and enhances control accuracy as much as possible under given control situation. In order to demonstrate the validity of the proposed algorithm safe headway maintenance control for autonomous transportation system is simulated. The control results show that the proposed algorithm guarantees system stability all the time and tunes control parameters consistently and in consequence implements an efficient control in terms of both accuracy and actuator chattering.

  • PDF

Development of an ACL Anchor: Effects of the Design Parameters on the Performance of a New Anterior Cruciate Ligament Fixation Device

  • Kim, Jong-Dae;Oh, Chae-Youn;Kim, Cheol-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • We investigated the biomechanical properties of a newly designed self-expansion type anterior cruciate ligament (ACL) anchor. The ACL anchor consists of the ring section giving the elastic force, the wedge for maintaining in contact with the femur tunnel wall and the link suspending hamstring graft or artificial ligament. The main design parameters that determine the performance of this device were the expansion angle (${\theta}$) and the thickness ($t_R$). The Ti6Al4V anchors were heated after inserting in a jig for 1 hour at $800^{\circ}C$ in a protective argon gas atmosphere and allowed to cool to room temperature in the furnace. In order to investigate the influence of the expansion angle and the thickness of the ring on the biomechanical properties of the anchor, the maximum pull-out load, stiffness and slippage of the ACL anchor were measured using the pull-out tester, and statistical analyses were also executed. The present results showed that the design parameters gave a significant effect on the performance of the self- expansion type of anchor. The pull-out load of the ACL anchors significantly increased as the thickness of the ring section was increased, having a similar trend for both expansion angles. The ACL anchor showed about 2.5 times higher values of the pull-out load than that of the minimum load (500N)required for the "accelerated rehabilitation". The optimum ${\theta}$ and $t_R$ values of this ACL anchor were suggested to have sufficient resistance against the pull-out force, high stiffness and relatively low slippage after ACL reconstruction.

Optimal Dimension Design and Stability Analysis of Non-slip Steel Grating (금속 그레이팅의 높이변화에 따른 최적치수 설계 및 안정성 해석)

  • Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.357-363
    • /
    • 2022
  • In this study, in order to develop an non-slip metal grating, the stability of the grating according to the span of the grating and the gap and height of the bearing bar was evaluated. The optimal shape design of the grating was performed using the results of determining the stability of the grating. The purpose of this study is to determine the stability according to the spacing and height of the bearing bar by applying the design pressure at the design stage to develop the anti-skid grating, and to design the optimal shape for cost reduction. In the optimal design, the target variable was set as the mass, and the optimal design of the grating was performed based on about 20%. Regardless of the height of the bearing bar of the grating, the stress and deformation of the span and the grating showed a proportional tendency to each other, and it was found that the stress decreased as the height of the bearing bar increased. Based on the structural analysis results, an optimal design was performed using mass as the objective variable, and the existing 2mm thickness was changed to 1.6mm, reducing the mass by about 19%. The stress increased by about 4.4% compared to the maximum stress of the existing grating, but the minimum safety factor was 3.1, indicating that the optimally designed grating was stable.

Minimum Weight Design of Built-up T Based on HCSR (HCSR 기반 T형 조립부재의 최소중량설계)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.389-394
    • /
    • 2017
  • In a conventional ship structure, stiffeners with an asymmetric section, such as inverted angles, are used widely despite the disadvantage of strength compared to the stiffeners with a symmetric section, such as a built-up T. On the other hand, T-type built-up members are attracting more attention than L-type inverted angles due to the increased size of ships. The purpose of this study was to develop an optimal design program for a built-up T, and apply an evolution strategy as an optimization technique. In the optimization process, the gross thickness concept was adopted for the design variables and objective function, and the constraints are set up based on HCSR (Harmonized Common Structural Rules). Using the developed program in this study, the optimal stiffener design was carried out for 300K VLCC and 158K COT of which the orders were obtained lately. The optimal results revealed the weight reduction effect of 144 tons and 60 tons, respectively.

A Study on Optimum design of Corrugated web girder using Eurocode (유로코드를 이용한 주름웨브보의 최적설계 연구)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.47-56
    • /
    • 2012
  • This paper describes the structural design and optimization of sinusoidally corrugated web girder by using EUROCODE (EN 1993-1-5). The optimum design methodology and characteristics of the optimal cross-section are discussed. We investigate a shear buckling and the concerned standards for corrugated web and explain the equations to obtain a critical stress according to buckling type. In order to perform optimization, we consider an objective function as minimum weight of the girder and use the constraint functions as slenderness ratio and stresses of flanges as well as corrugated web and deflection. Genetic Algorithm is adopted to search a global optimum solution for this mathematical model. For numerical example, the clamped girder under the concentrated load is considered, while the optimum cross-sectional area and design variables are analyzed. From the results of the adopted example, the optimum design program of the sinusoidally corrugated web girder is able to find the suitable solution which satisfied a condition subject to constraint functions. The optimum design shows the tendency to decrease the cross-sectional area with the yielding strength increase and increase the areas with load increase. Moreover, the corrugated web thickness shows a stable increase concerning the load.

EFFECT OF MISALIGNMENT ON THE STATIC CHARACTERISTICS OF 3-LOBE proceeding BEARING

  • Strzelecki, S.;Radulski, W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.95-96
    • /
    • 2002
  • The operation of proceeding bearing in the conditions of misaligned axis of proceeding and bush leads to the load concentration on the bearing edges causing further mixed lubrication conditions, unstable operation and intensive wear of mating parts. For the design process of proceeding bearing the knowledge of static characteristics determined from the oil film pressure and temperature distribution is very important. For the 3-lobe proceeding bearing, the pressure, temperature and viscosity fields, load capacity, minimum oil film thickness, power loss, oil flow and maximum oil film temperature have been determined by iterative solution of the Reynolds', energy and viscosity equations. The paper introduces the results of theoretical investigations of static characteristics of 3-lobe proceeding bearing operating at misaligned axis of proceeding and bush. An effect of misalignment ratio, length to diameter ratio of the proceeding bearing, the lobe clearance ratio on the static characteristics was investigated. Laminar, adiabatic model of oil film for the solution of Reynolds, energy and viscosity equations was applied.

  • PDF

Crankshaft Bearing Design Adapting Continuous Oil Supply System (연속오일공급 형태의 크랭크샤프트 베어링 설계)

  • Yun Jeong-Eui
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.84-90
    • /
    • 2004
  • It is very important to improve the durability and reliability of crankshaft because of conflicting demands for lower fuel consumption and higher power output. In this study, for the crankshaft bearing design, analyses were conducted to determine the lubrication characteristics such as oil flow rate, minimum oil film thickness, friction force and increase of oil temperature at main bearing and connecting rod bearing. Additionally, supplied oil pressure and temperature effects on the bearings were simulated to figure out lubrication characteristics on the bearings. Finally the effects of increasing the bearing width and clearance were introduced on the lubrication characteristics.

Analysis of Reinforced Concrete Structures under Carbonation U sing Monte Carlo Simulation method (MSC 방법을 이용한 철근콘크리트 구조물의 탄산화 해석)

  • Kim, Jee-Sang;Park, Hye-Jong;Kim, Joo-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.301-302
    • /
    • 2009
  • Uncertainties in carbonation process of concrete structures are treated by probability-based durability analysis for carbonation using Monte Carlo simulation technique. The results requires the minimum cover thickness of 53mm for 10% of corrosion probability under 4mm/$year^{0.5}$ of carbonation coefficient. The more researches on statistical properties of design variables may give reliable durability analysis/design methods for carbonation of concrete structures.

  • PDF