DOI QR코드

DOI QR Code

Minimum Weight Design of Built-up T Based on HCSR

HCSR 기반 T형 조립부재의 최소중량설계

  • Shin, Sang-Hoon (Department of Aero Mechanical Engineering, Kyungwoon University) ;
  • Ko, Dae-Eun (Department of Naval Architecture and Ocean Engineering, Dong-Eui University)
  • 신상훈 (경운대학교 항공기계공학과) ;
  • 고대은 (동의대학교 조선해양공학과)
  • Received : 2017.01.31
  • Accepted : 2017.06.09
  • Published : 2017.06.30

Abstract

In a conventional ship structure, stiffeners with an asymmetric section, such as inverted angles, are used widely despite the disadvantage of strength compared to the stiffeners with a symmetric section, such as a built-up T. On the other hand, T-type built-up members are attracting more attention than L-type inverted angles due to the increased size of ships. The purpose of this study was to develop an optimal design program for a built-up T, and apply an evolution strategy as an optimization technique. In the optimization process, the gross thickness concept was adopted for the design variables and objective function, and the constraints are set up based on HCSR (Harmonized Common Structural Rules). Using the developed program in this study, the optimal stiffener design was carried out for 300K VLCC and 158K COT of which the orders were obtained lately. The optimal results revealed the weight reduction effect of 144 tons and 60 tons, respectively.

선체구조의 보강재로서 비대칭 단면재인 L 형강재가 대칭 단면재인 T형 조립부재(built-up T)에 비해 단면 비틀림 현상 등 다소 불리한 강도 특성에도 불구하고 오랜 관습과 자재 구입의 용이성 등으로 널리 사용되어 왔다. 그러나 근래 선박이 대형화 되어감에 따라 보강재의 형태는 압출 형강재의 사용이 줄고 다양한 설계 치수를 반영하여 용접을 통해 직접 제작하는 조립부재의 적용이 늘어가는 추세이다. 본 연구의 목적은 점차 사용량이 증대되고 있는 조립형 보강재의 효율적인 적용을 위한 최적설계 프로그램을 개발하는데 있다. 최적화 알고리즘으로는 선박 및 해양구조물의 최적설계에 많이 적용되고 있는 진화전략 기법을 선정하였다. 최적설계 결과의 실용성을 위해 부식여유를 고려한 총두께 개념을 설계변수와 목적함수에 도입하였고, 제한조건에는 최근 발효된 통합공통구조규칙(HCSR, Harmonized Common Structural Rules)을 적용하였다. 개발된 최적화 프로그램을 이용하여 최근 수주된 300K VLCC와 158K COT의 실선 설계를 수행한 결과 각각 144톤, 60톤의 중량 절감 효과를 얻었으며 대형 선박일수록 중량 절감 효과가 크게 나타남을 확인하였다.

Keywords

References

  1. International Association of Classification Societies (IACS), Common Structural Rules for Bulk carriers, 2012.
  2. International Association of Classification Societies (IACS), Common Structural Rules for Double Hull Oil Tankers, 2012.
  3. International Association of Classification Societies (IACS), Common Structural Rules for Bulk Carrier and Oil Tankers, 2015.
  4. C. H. Sung and S. K. Lee, "Comparison Analysis on Requirement of Structural Members by Application of Harmonized Common Structural Rules", Journal of the Society of Naval Architects of Korea, vol. 52, no. 3, pp. 265-274, 2015. DOI: https://doi.org/10.3744/SNAK.2015.52.3.265
  5. C. I. Park, S. Jeong, H. C. Song, S. S. Na, M. C. Park, S. H. Shin and J. Y. Lee, "Development of an Automated Design Algorithm for the Longitudinal Members of Oil Tankers based on H-CSR", Journal of the Society of Naval Architects of Korea, vol. 53, no. 6, pp. 503-513, 2015. https://doi.org/10.3744/SNAK.2016.53.6.503
  6. S. J. Yim, Y. S. Yang and J. S. Lee, "On the Strength Analysis of the Stiffener with Asymmetric Cross Section", Journal of the Society of Naval Architects of Korea, vol. 17, no. 1, pp. 11-18, 1980.
  7. S. H. Shin, S. B. Hwang and D. E. Ko, "A Study on the Optimum Design of Cargo Tank for the LPG Carriers Considering Fabrication Cost", Journal of the Society of Naval Architects of Korea, vol. 48, no. 2, pp. 178-182, 2011. DOI: https://doi.org/10.3744/SNAK.2011.48.2.178
  8. H. P. Schwefel, Numerical Optimization of Computer Models, Wiley, Chichester, 1981.
  9. D. E. Goldberg, Genetic Algorithms in Search Optimization & Machine Learning, Addison Wesley, 1989.