• Title/Summary/Keyword: Minimum statistics

Search Result 356, Processing Time 0.022 seconds

Robust extreme quantile estimation for Pareto-type tails through an exponential regression model

  • Richard Minkah;Tertius de Wet;Abhik Ghosh;Haitham M. Yousof
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.531-550
    • /
    • 2023
  • The estimation of extreme quantiles is one of the main objectives of statistics of extremes (which deals with the estimation of rare events). In this paper, a robust estimator of extreme quantile of a heavy-tailed distribution is considered. The estimator is obtained through the minimum density power divergence criterion on an exponential regression model. The proposed estimator was compared with two estimators of extreme quantiles in the literature in a simulation study. The results show that the proposed estimator is stable to the choice of the number of top order statistics and show lesser bias and mean square error compared to the existing extreme quantile estimators. Practical application of the proposed estimator is illustrated with data from the pedochemical and insurance industries.

Automatic Selection of the Turning Parametter in the Minimum Density Power Divergence Estimation

  • Changkon Hong;Kim, Youngseok
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.453-465
    • /
    • 2001
  • It is often the case that one wants to estimate parameters of the distribution which follows certain parametric model, while the dta are contaminated. it is well known that the maximum likelihood estimators are not robust to contamination. Basuet al.(1998) proposed a robust method called the minimum density power divergence estimation. In this paper, we investigate data-driven selection of the tuning parameter $\alpha$ in the minimum density power divergence estimation. A criterion is proposed and its performance is studied through the simulation. The simulation includes three cases of estimation problem.

  • PDF

Nonparametric confidence intervals for quantiles based on a modified ranked set sampling

  • Morabbi, Hakime;Razmkhah, Mostafa;Ahmadi, Jafar
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.119-129
    • /
    • 2016
  • A new sampling method is introduced based on the idea of a ranked set sampling scheme in which taken samples in each set are dependent on previous ones. Some theoretical results are presented and distribution-free confidence intervals are derived for the quantiles of any continuous population. It is shown numerically that the proposed sampling scheme may lead to 95% confidence intervals (especially for extreme quantiles) that cannot be found based on the ordinary ranked set sampling scheme presented by Chen (2000) and Balakrishnan and Li (2006). Optimality aspects of this scheme are investigated for both coverage probability and minimum expected length criteria. A real data set is also used to illustrate the proposed procedure. Conclusions are eventually stated.

Estimation for Exponential Distribution under General Progressive Type-II Censored Samples

  • Kang, Suk-Bok;Cho, Young-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.239-245
    • /
    • 1997
  • By assuming a general progressive Type-II censored sample, we propose the minimum risk estimator (MRE) and the approximate maximum likelihood estimator (AMLE) of the scale parameter of the one-parameter exponential distribution. An example is given to illustrate the methods of estimation discussed in this paper.

  • PDF

Statistical Decision making of Association Threshold in Association Rule Data Mining

  • Park, Hee-Chang;Song, Geum-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.115-128
    • /
    • 2002
  • One of the well-studied problems in data mining is the search for association rules. In this paper we consider the statistical decision making of association threshold in association rule. A chi-squared statistic is used to find minimum association threshold. We calculate the range of the value that two item sets are occurred simultaneously, and find the minimum confidence threshold values.

  • PDF

Statistical Decision making of Association Threshold in Association Rule Data Mining

  • Park, Hee-Chang;Song, Geum-Min
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.169-182
    • /
    • 2002
  • One of the well-studied problems in data mining is the search for association rules. In this paper we consider the statistical decision making of association threshold in association rule. A chi-squared statistic is used to find minimum association threshold. We can calculate the range of the value that two item sets are occurred simultaneously, and can find the minimum confidence threshold values.

  • PDF

On Estimating the Variance of a Normal Distribution With Known Coefficient of Variation

  • Ray, S.K.;Sahai, A.
    • Journal of the Korean Statistical Society
    • /
    • v.7 no.2
    • /
    • pp.95-98
    • /
    • 1978
  • This note deals with the estimations of the variance of a normal distribution $N(\theta,c\theta^2)$ where c, the square of coefficient of variation is assumed to be known. This amounts to the estimation of $\theta^2$. The minimum variance estimator among all unbiased estimators linear in $\bar{x}^2$ and $s^2$ where $\bar{x}$ and $s^2$ are the sample mean and variance, respectively, and the minimum risk estimator in the class of all estimators linear in $\bar{x}^2$ and $s^2$ are obtained. It is shown that the suggested estimators are BAN.

  • PDF

Estimation of Pr(X>Y) in the case of Exponential X and Normal Y

  • Kim, Jae-Joo;Kim, Hwan-Joong
    • Journal of Korean Society for Quality Management
    • /
    • v.15 no.2
    • /
    • pp.27-37
    • /
    • 1987
  • In life testing problem, many authors obtained the minimum variance unbiased estimator of $P_r$[X>Y] for the exponential family generally and conceptually. In this paper, we study the maximum likelihood estimator and minimum variance unbiased estimator of $P_r$[X>Y] in exponential X and normal Y.

  • PDF

Estimation of Pr(Y < X) in the Censored Case

  • Kim, Jae Joo;Yeum, Joon Keun
    • Journal of Korean Society for Quality Management
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 1984
  • We study some estimation of the ${\theta}=P_r$(Y${\theta}$. We consider asymptotic property of estimators and maximum likelihood estimator is compared with unique minimum veriance unbiased estimator in moderate sample size.

  • PDF

Non-Stationary/Mixed Noise Estimation Algorithm Based on Minimum Statistics and Codebook Driven Short-Term Predictor Parameter Estimation (최소 통계법과 Short-Term 예측계수 코드북을 이용한 Non-Stationary/Mixed 배경잡음 추정 기법)

  • Lee, Myeong-Seok;Noh, Myung-Hoon;Park, Sung-Joo;Lee, Seok-Pil;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.200-208
    • /
    • 2010
  • In this work, the minimum statistics (MS) algorithm is combined with the codebook driven short-term predictor parameter estimation (CDSTP) to design a speech enhancement algorithm that is robust against various background noise environments. The MS algorithm functions well for the stationary noise but relatively not for the non-stationary noise. The CDSTP works efficiently for the non-stationary noise, but not for the noise that was not considered in the training stage. Thus, we propose to combine CDSTP and MS. Compared with the single use of MS and CDSTP, the proposed method produces better perceptual evaluation of speech quality (PESQ) score, and especially works excellent for the mixed background noise between stationary and non-stationary noises.