• Title/Summary/Keyword: Minimum Phase

Search Result 928, Processing Time 0.025 seconds

Changes of Walking Pattern for Young Adults dur ing Level Walking under Low Illumination (20대 남성의 낮은 조도의 평지 보행 시 보행 패턴 변화)

  • Choi, Jin-Seung;Kang, Dong-Won;Bang, Yun-Hwan;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.381-386
    • /
    • 2010
  • This study examined the changes in the walking pattern during level walking under low illumination conditions. Fourteen male subjects ($22.1{\pm}2.21$ years, $174{\pm}3.74\;cm$, $68.86{\pm}10.81\;kg$) with normal vision and no disabilities were enrolled in this study. All experiments were performed on a level walkway with three conditions: normal walking (preferred & low speed) and walking with low illumination. 3D motion capturing system was used for acquisition and analysis of the walking motion data with a sampling frequency of 120Hz. The walking speed, normalized jerk(NJ) at the center of mass(COM), wrist and heel, knee and elbow joint angle, ratio of the knee joint angle to elbow joint angle and the toe clearance on stance phase were used to compare the differences in walking pattern between the two illumination conditions, The results showed that the walking speed and joint angles decreased in low illumination, whereas the NJ and toe minimum clearance increased. In low illumination, most variables were similar to effects of low speed walking, but toe clearance was different from the effects of low speed. These results can be used as primary data for examining the changes in the level walking pattern of young adults under low illumination. Further study will be needed to compare these results in young adults with those in the elderly.

Heat treatment effects on the electrical properties of $In_2O_3$-ZnO films prepared by rf-magnetron sputtering method (마그네트론 스퍼터링 방법으로 제작된 $In_2O_3$-ZnO 박막의 전기적 특성에 대한 열처리 효과)

  • Kim, Hwa-Min;Kim, Jong-Jae
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.238-244
    • /
    • 2005
  • IZO thin films are prepared on a corning 7059 glass substrate in a mixed gases of Ar +$O_2$ by rf-magnetron sputtering, using a powder target with a composition ratio of $In_{2}O_{3}$ : ZnO=90 : 10 $wt.\%$. Their electrical sheet resistance are strongly dependent on the oxygen concentration introduced during the deposition, a minimum resistivity of $3.7\times10^{-4}\Omega\cdot$ cm and an average transmittance over $85\%$ in the visible range are obtained in a film deposited in pure Ar gas which is close to near the stoichiometry. During the heat treatment from room temperature up tp $600^{\circ}C$ in various environments, the electrical resistance changes are explained by cyrstallizations or oxidizations of In metal and InO contained in the IZO film. The electrical properties due to oxygen adsorption and phase transitions occurring at temperatures over $40000^{\circ}C$ during heat treatment in air are also investigated.

The Studies on Relationship Between Forest Fire Characteristics and Weather Phase in Jeollanam-do Region (통계자료에 의한 기상과 산불특성의 관련성 -전라남도지방을 중심으로-)

  • Lee, Si-Young;Park, Houng-Sek;Kim, Young-Woong;Yun, Hoa-Young;Kim, Jong-Kab
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.29-35
    • /
    • 2011
  • A forest fire was one of the huge disasters and damaged human lifes and a properties. Therefore, many countries operated forest fire forecasting systems which developed from forest fire records, weather data, fuel models and etc. And many countries also estimated future state of forest fire using a long-term climate forecasting like GCMs and prepared resources for future huge disasters. In this study, we analyzed relationships between forest fire occurrence and meteorological factors (the minimum temperature ($^{\circ}C$), the relative humidity (%), the precipitation (mm), the duration of sunshine (hour) and etc.) for developing a estimating tools, which could forecast forest fire regime under future climate change condition. Results showed that forest fires in this area were mainly occurred when the maximum temperature was $10{\sim}200^{\circ}C$, when the relative humidity was 40~60%, and when the average wind speed was under 2m/s. And forest fires mainly occurred at 2~3 day after rainfall.

A Study on Countermeasures of Electronic Component Industry according to Korean Emission Trading Scheme Enforcement (국내 배출권거래제 시행에 따른 전자부품산업 대응방안 연구)

  • Choi, Eun Kyung;Lim, Hoseon;Lee, Min Young;Shin, Seung-chol
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.331-338
    • /
    • 2014
  • The continued efforts to reduce GHG emission by international cooperation and each country are in progress. As part of these efforts, Korea's ETS is enforced in 2015. This was the time to make strategies for each company to respond Korea's ETS. This study was performed to suggest a draft of basic strategies for electronic component industry in current Korea's ETS stage are as follows; - Analyzing the nature of electronic component industry - Identifying needs for corresponding ETS of electronic component industry - Analyzing basic countermeasures for each stage of ETS - Suggesting drafts of basic strategies for electronic component industry in current Korea's ETS stage The result of this study, the current stage of Korea's ETS is moving from implementation of the scheme become determined and prepare the minimum corresponding to direct corresponding to the regulation and market change. Electronic component industry has many GHG emission growth(or change) factor, and it will be make electronic component industry as a buyer when Korea's ETS is enforced. Korea's ETS will be clearly act as a regulation rather than new business for electronic component industry. Therefore, identifying the Korea's ETS as a regulation is resonable strategy for corresponding the scheme. The basic strategies of electronic component industry th responding Korea's ETS are as follows; - Building internal organization and decision-making system before enforcement the Korea's ETS - Establishing internal basic corresponding strategies according to carbon price forecast scenarios - Considering the energy consumption and GHG emissions in design phase and preparing the global ETS market in mid or long term.

Notes On Inverse Interval Graph Coloring Problems

  • Chung, Yerim;Kim, Hak-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.57-64
    • /
    • 2019
  • In this paper, we study a polynomially solvable case of the inverse interval graph coloring problem. Given an interval graph associated with a specific interval system, the inverse interval graph coloring problem is defined with the assumption that there is no proper K-coloring for the given interval graph, where K is a fixed integer. The problem is to modify the system of intervals associated with the given interval graph by shifting some of the intervals in such a way that the resulting interval graph becomes K-colorable and the total modification is minimum with respect to a certain norm. In this paper, we focus on the case K = 1 where all intervals associated with the interval graph have length 1 or 2, and interval displacement is only allowed to the righthand side with respect to its original position. To solve this problem in polynomial time, we propose a two-phase algorithm which consists of the sorting and First Fit procedure.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

The Investigation of Ni Thin Film by Atomic Layer Deposition

  • Do K. W.;Yang C. M.;Kang I. S.;Kim K. M.;Back K. H.;Cho H. I.;Lee H. B.;Kong S. H.;Hahm S. H.;Kwon D. H.;Lee J. H.;Lee J. H.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.193-196
    • /
    • 2005
  • Low resistance Ni thin films for using NiSi formation and metallization by atomic layer deposition (ALD) method have been studied. ALD temperature window is formed between $200^{\circ}C\;and\;250^{\circ}C$ with deposition rate of $1.25{\AA}$/cycle. The minimum resistance of deposited Ni films shows $4.333\;{\Omega}/\square$ on the $SiO_2/Si$ substrate by $H_2$ direct purging process. The reason of showing the low resistance is believed to be due to format ion of the $Ni_3C$ phase by residual carbon in Bis-Ni The deposited film exhibits excellent step coverage in the trench having 1(100 nm) : 16 (1.6 um) aspect ratio.

  • PDF

Thickness and Surface Measurement of Transparent Thin-Film Layers using White Light Scanning Interferometry Combined with Reflectometry

  • Jo, Taeyong;Kim, KwangRak;Kim, SeongRyong;Pahk, HeuiJae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.236-243
    • /
    • 2014
  • Surface profiling and film thickness measurement play an important role for inspection. White light interferometry is widely used for engineering surfaces profiling, but its applications are limited primarily to opaque surfaces with relatively simple optical reflection behavior. The conventional bucket algorithm had given inaccurate surface profiles because of the phase error that occurs when a thin-film exists on the top of the surface. Recently, reflectometry and white light scanning interferometry were combined to measure the film thickness and surface profile. These techniques, however, have found that many local minima exist, so it is necessary to make proper initial guesses to reach the global minimum quickly. In this paper we propose combing reflectometry and white light scanning interferometry to measure the thin-film thickness and surface profile. The key idea is to divide the measurement into two states; reflectometry mode and interferometry mode to obtain the thickness and profile separately. Interferogram modeling, which considers transparent thin-film, was proposed to determine parameters such as height and thickness. With the proposed method, the ambiguity in determining the thickness and the surface has been eliminated. Standard thickness specimens were measured using the proposed method. Multi-layered film measurement results were compared with AFM measurement results. The comparison showed that surface profile and thin-film thickness can be measured successfully through the proposed method.

Comparison of Vertical Ground Reaction Forces during Jump between Elderly and Young Adults using Nintendo Wii Balance Board

  • Lim, Jiyoung;Yu, Deokhyeon;Kim, Chaeyoung;Park, Daesung
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.2
    • /
    • pp.161-166
    • /
    • 2021
  • Objective: The purpose of this study was to quantitatively evaluate the Wii Balance Board (WBB)-based jump performance for the elderly and to confirm the difference in jump performance according to age. Design: Cross-sectional study. Methods: 40 young adults (aged 22.5±2.2 years) and 33 elderly (aged 75.1±5.2 years) without orthopedics disease participated in this study. Standing on the WBB then, with the signal "start," jump vertically to the maximum height at which you can jump, land on the force plate after jump and keep it standing on both feet. All subjects were required to practice the jump sufficiently before starting the measurement, each measuring three times, and the mean values were used. A one-minute break was provided between each trial. Evaluators waited within 1meter for every test to prepare for fall. Results: The vertical ground reaction force of elderly and young adults when jumping using WBB showed a significant difference (p<0.05) and demonstrated discriminant validity. Between two groups, there were significant differences in overall jump time (p<0.05), maximum value (p<0.05), minimum value (p<0.05), center of pressure (COP) pathlength (p<0.05), and flight time p<0.05). Conclusions: This study found that performing the vertical jump, the elderly showed longer jump time, lower vertical ground reaction force, COP pathlength and shorter flight phase than healthy young adults using WBB and demonstrated that as a measurement tool, WBB discriminated vertical jump performance between elderly and young adults.

A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach

  • Awoyera, Paul O.;Mansouri, Iman;Abraham, Ajith;Viloria, Amelec
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.333-341
    • /
    • 2021
  • Steel slag, an industrial reject from the steel rolling process, has been identified as one of the suitable, environmentally friendly materials for concrete production. Given that the coarse aggregate portion represents about 70% of concrete constituents, other economic approaches have been found in the use of alternative materials such as steel slag in concrete. Unfortunately, a standard framework for its application is still lacking. Therefore, this study proposed functional model equations for the determination of strength properties (compression and splitting tensile) of steel slag aggregate concrete (SSAC), using gene expression programming (GEP). The study, in the experimental phase, utilized steel slag as a partial replacement of crushed rock, in steps 20%, 40%, 60%, 80%, and 100%, respectively. The predictor variables included in the analysis were cement, sand, granite, steel slag, water/cement ratio, and curing regime (age). For the model development, 60-75% of the dataset was used as the training set, while the remaining data was used for testing the model. Empirical results illustrate that steel aggregate could be used up to 100% replacement of conventional aggregate, while also yielding comparable results as the latter. The GEP-based functional relations were tested statistically. The minimum absolute percentage error (MAPE), and root mean square error (RMSE) for compressive strength are 6.9 and 1.4, and 12.52 and 0.91 for the train and test datasets, respectively. With the consistency of both the training and testing datasets, the model has shown a strong capacity to predict the strength properties of SSAC. The results showed that the proposed model equations are reliably suitable for estimating SSAC strength properties. The GEP-based formula is relatively simple and useful for pre-design applications.