Browse > Article
http://dx.doi.org/10.12989/cac.2021.27.4.333

A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach  

Awoyera, Paul O. (Department of Civil Engineering, Covenant University)
Mansouri, Iman (Department of Civil Engineering, Birjand University of Technology)
Abraham, Ajith (Machine Intelligence Research Labs)
Viloria, Amelec (Universidad de la Costa)
Publication Information
Computers and Concrete / v.27, no.4, 2021 , pp. 333-341 More about this Journal
Abstract
Steel slag, an industrial reject from the steel rolling process, has been identified as one of the suitable, environmentally friendly materials for concrete production. Given that the coarse aggregate portion represents about 70% of concrete constituents, other economic approaches have been found in the use of alternative materials such as steel slag in concrete. Unfortunately, a standard framework for its application is still lacking. Therefore, this study proposed functional model equations for the determination of strength properties (compression and splitting tensile) of steel slag aggregate concrete (SSAC), using gene expression programming (GEP). The study, in the experimental phase, utilized steel slag as a partial replacement of crushed rock, in steps 20%, 40%, 60%, 80%, and 100%, respectively. The predictor variables included in the analysis were cement, sand, granite, steel slag, water/cement ratio, and curing regime (age). For the model development, 60-75% of the dataset was used as the training set, while the remaining data was used for testing the model. Empirical results illustrate that steel aggregate could be used up to 100% replacement of conventional aggregate, while also yielding comparable results as the latter. The GEP-based functional relations were tested statistically. The minimum absolute percentage error (MAPE), and root mean square error (RMSE) for compressive strength are 6.9 and 1.4, and 12.52 and 0.91 for the train and test datasets, respectively. With the consistency of both the training and testing datasets, the model has shown a strong capacity to predict the strength properties of SSAC. The results showed that the proposed model equations are reliably suitable for estimating SSAC strength properties. The GEP-based formula is relatively simple and useful for pre-design applications.
Keywords
concrete; steel slag; strength properties; genetic expression programming; experimental data;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Gandomi, A.H., Alavi, A.H., Kazemi, S. and Gandomi, M. (2014), "Formulation of shear strength of slender RC beams using gene expression programming, part I: Without shear reinforcement", Autom. Constr., 42, 112-121. https://doi.org/https://doi.org/10.1016/j.autcon.2014.02.007.   DOI
2 GepSoft (2015). GeneXproTools 4.0.
3 Golafshani, E.M., Rahai, A. and Kebria, S.S.H. (2014), "Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming", Comput. Concrete, 14(3), 327-345. https://doi.org/10.12989/cac.2014.14.3.327.   DOI
4 Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2013), "A novel formulation of the flexural overstrength factor for steel beams", J. Constr. Steel Res., 90, 60-71. https://doi.org/https://doi.org/10.1016/j.jcsr.2013.07.022.   DOI
5 Guneyisi, E.M. and Nour, A.I. (2019), "Axial compression capacity of circular CFST columns transversely strengthened by FRP", Eng. Struct., 191, 417-431. https://doi.org/10.1016/j.engstruct.2019.04.056.   DOI
6 Guo, J., Bao, Y. and Wang, M. (2018a), "Steel slag in China: Treatment, recycling, and management", Waste Manage., 78, 318-330. https://doi.org/10.1016/j.wasman.2018.04.045.   DOI
7 Rooholamini, H., Sedghi, R., Ghobadipour, B. and Adresi, M. (2019), "Effect of electric arc furnace steel slag on the mechanical and fracture properties of roller-compacted concrete", Constr. Build. Mater., 211, 88-98. https://doi.org/10.1016/j.conbuildmat.2019.03.223.   DOI
8 Sadeghian, P. and Fam, A. (2015), "Improved design-oriented confinement models for FRP-wrapped concrete cylinders based on statistical analyses", Eng. Struct., 87, 162-182. https://doi.org/10.1016/j.engstruct.2015.01.024.   DOI
9 Saridemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489.   DOI
10 Subathra Devi, V. and Gnanavel, B.K. (2014). "Properties of concrete manufactured using steel slag", Proceedings of the Procedia Engineering, 95-104.
11 Tsai, H.C. (2013), "Polynomial modeling of confined compressive strength and strain of circular concrete columns", Comput. Concrete, 11(6), 603-620. https://doi.org/10.12989/cac.2013.11.6.603.   DOI
12 Tsai, H.C. and Liao, M.C. (2019), "Knowledge-based learning for modeling concrete compressive strength using genetic programming", Comput. Concrete, 23(4), 255-265. https://doi.org/10.12989/cac.2019.23.4.255.   DOI
13 Erdem, S., Gurbuz, E. and Uysal, M. (2018), "Micro-mechanical analysis and X-ray computed tomography quantification of damage in concrete with industrial by-products and construction waste", J. Clean. Prod., 189, 933-940. https://doi.org/10.1016/j.jclepro.2018.04.089.   DOI
14 D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2015), "Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams", Thin Wall. Struct., 94, 67-78. https://doi.org/10.1016/j.tws.2015.03.020.   DOI
15 Ding, Y., Yang, Y., Liu, R.G., Xiao, T. and Tian, J.H. (2019), "Study on pressure sensitivity of smart polymer concrete based on steel slag", Meas.: J. Int. Meas. Conf., 140, 14-21. https://doi.org/10.1016/j.measurement.2019.03.040.   DOI
16 Ebrahimzade, H., Khayati, G.R. and Schaffie, M. (2018), "A novel predictive model for estimation of cobalt leaching from waste Li-ion batteries: Application of genetic programming for design", J. Environ. Chem. Eng., 6(4), 3999-4007. https://doi.org/10.1016/j.jece.2018.05.045.   DOI
17 Farzampour, A., Mansouri, I., Mortazavi, S.J. and Hu, J.W. (2019). "Force-displacement relationship of a butterfly-shaped beams based on gene expression programming", Proceedings of the 10th Int. Symp. Steel Struct., Jeju, South Korea.
18 Ferreira, C. (2001), "Gene expression programming; a new adaptive algorithm for solving problems", Complex Syst., 12(2), 87-129.
19 Gupta, T. and Sachdeva, S.N. (2019), "Laboratory investigation and modeling of concrete pavements containing AOD steel slag", Cement Concrete Res., 124. https://doi.org/10.1016/j.cemconres.2019.105808.   DOI
20 Guo, Y., Xie, J., Zheng, W. and Li, J. (2018b), "Effects of steel slag as fine aggregate on static and impact behaviours of concrete", Constr. Build. Mater., 192, 194-201. https://doi.org/10.1016/j.conbuildmat.2018.10.129.   DOI
21 Han, F. and Zhang, Z. (2018), "Properties of 5-year-old concrete containing steel slag powder", Powder Technol., 334, 27-35. https://doi.org/10.1016/j.powtec.2018.04.054.   DOI
22 Baalamurugan, J., Ganesh Kumar, V., Chandrasekaran, S., Balasundar, S., Venkatraman, B., Padmapriya, R. and Bupesh Raja, V.K. (2019), "Utilization of induction furnace steel slag in concrete as coarse aggregate for gamma radiation shielding", J. Hazard. Mater., 369, 561-568. https://doi.org/10.1016/j.jhazmat.2019.02.064.   DOI
23 Mansouri, I. and Farzampour, A. (2018), "Buckling assessment of imperfect cylindrical shells under axial loading using a GEP technique", Electron. J. Facult. Civil Eng. Osijek-e-GFOS, 9(17), 89-100. https://doi.org/10.13167/2018.17.9.   DOI
24 Maslehuddin, M., Sharif, A.M., Shameem, M., Ibrahim, M. and Barry, M.S. (2003), "Comparison of properties of steel slag and crushed limestone aggregate concretes", Constr. Build. Mater., 17(2), 105-112. https://doi.org/10.1016/S0950-0618(02)00095-8.   DOI
25 Mehta, A. and Ashish, D.K. (2019), "Silica fume and waste glass in cement concrete production: A review", J. Build. Eng., 29, 100888. https://doi.org/10.1016/j.jobe.2019.100888.   DOI
26 Awoyera, P.O., Adekeye, A.W. and Babalola, O.E. (2015), "Influence of electric arc furnace (EAF) slag aggregate sizes on the workability and durability of concrete", Int. J. Eng. Technol., 7(3), 1049-1056.
27 Awoyera, P.O., Olofinnade, O.M., Busari, A.A., Akinwumi, I.I., Oyefesobi, M. and Ikemefuna, M. (2016), "Performance of steel slag aggregate concrete with varied water- cement ratio", J. Teknol., 78(10), 125-131. https://doi.org/10.11113/jt.v78.8819.   DOI
28 Castelli, M., Trujillo, L., Goncalves, I. and Popovic, A. (2017), "An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming", Comput. Concrete, 19(6), 651-658. https://doi.org/10.12989/cac.2017.19.6.651.   DOI
29 Cevik, A. and Sonebi, M. (2008), "Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique", Comput. Concrete, 5(5), 475-490. https://doi.org/10.12989/cac.2008.5.5.475.   DOI
30 Cheng, Y.H., Huang, F., Liu, R., Hou, J.L. and Li, G.L. (2016), "Test research on effects of waste ceramic polishing powder on the permeability resistance of concrete", Mater. Struct., 49(3), 729-738. https://doi.org/10.1617/s11527-015-0533-6.   DOI
31 Oliveira, V.H.S., Buitrago, N.D.T., Ribeiro, L.F.M. and Cavalcante, A.L.B. (2018), "Steel aggregate swelling potential in layers of road pavements", J. Environ. Eng., 144(9), 04018077. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001435.   DOI
32 Gandomi, A.H., Alavi, A.H., Gandomi, M. and Kazemi, S. (2017), "Formulation of shear strength of slender RC beams using gene expression programming, part II: With shear reinforcement", Meas.: J. Int. Meas. Conf., 95, 367-376. https://doi.org/10.1016/j.measurement.2016.10.024.   DOI
33 Mo, L., Zhang, F., Deng, M., Jin, F., Al-Tabbaa, A. and Wang, A. (2017), "Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates", Cement Concrete Compos., 83, 138-145. https://doi.org/10.1016/j.cemconcomp.2017.07.018.   DOI
34 Murad, Y. (2020), "Joint shear strength models for exterior RC beam-column connections exposed to biaxial and uniaxial cyclic loading", J. Build. Eng., 30. https://doi.org/10.1016/j.jobe.2020.101225.   DOI
35 Nedjah, N., Abraham, A. and de Macedo, M.L. (2009), Genetic Systems Programming: Theory and Experiences, Springer.
36 Nour, A.I. and Guneyisi, E.M. (2019), "Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns", Compos. Part B: Eng., 173, 106938. https://doi.org/10.1016/j.compositesb.2019.106938.   DOI
37 Abraham, A., Falcon, R. and Koeppen, M. (2017), Computational Intelligence in Wireless Sensor Networks: Recent Advances and Future Challenges, Springer.
38 Wang, Y. and Suraneni, P. (2019), "Experimental methods to determine the feasibility of steel slags as supplementary cementitious materials", Constr. Build. Mater., 204, 458-467. https://doi.org/10.1016/j.conbuildmat.2019.01.196.   DOI
39 Wu, J., Liu, Q., Deng, Y., Yu, X., Feng, Q. and Yan, C. (2019), "Expansive soil modified by waste steel slag and its application in subbase layer of highways", Soil. Found., 59(4), 955-965. https://doi.org/10.1016/j.sandf.2019.03.009.   DOI
40 Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2), 155-164. https://doi.org/10.12989/cac.2016.18.2.155.   DOI
41 Abraham, A., Grosan, C. and Pedrycz, W. (2008), Engineering Evolutionary Intelligent Systems, Springer.
42 Akinwumi, I. (2014), "Soil modification by the application of steel slag", Period. Polytech. Civil Eng., 58(4), 371-377. https://doi.org/10.3311/PPci.7239.   DOI
43 Awoyera, P.O. (2018), "Predictive models for determination of compressive and split-tensile strengths of steel slag aggregate concrete", Mater. Res. Innov., 22(5), 287-293. https://doi.org/10.1080/14328917.2017.1317394.   DOI
44 Zalnezhad, M. and Hesami, E. (2019), "Effect of steel slag aggregate and bitumen emulsion types on the performance of microsurfacing mixture", J. Traffic Transp. Eng. https://doi.org/10.1016/j.jtte.2018.12.005.   DOI
45 Cladera, A., Perez-Ordonez, J.L. and Martinez-Abella, F. (2014), "Shear strength of RC beams. Precision, accuracy, safety and simplicity using genetic programming", Comput. Concrete, 14(4), 479-501. https://doi.org/10.12989/cac.2014.14.4.479.   DOI
46 Hodhod, O.A., Said, T.E. and Ataya, A.M. (2018), "Prediction of creep in concrete using genetic programming hybridized with ANN", Comput. Concrete, 21(5), 513-523. https://doi.org/10.12989/cac.2018.21.5.513.   DOI
47 Lang, L., Duan, H. and Chen, B. (2019), "Properties of pervious concrete made from steel slag and magnesium phosphate cement", Constr. Build. Mater., 209, 95-104. https://doi.org/10.1016/j.conbuildmat.2019.03.123.   DOI
48 Liu, J. and Guo, R. (2019), "The microstructures of hardened composite binders containing steel slag and GGBS at 10 years", Constr. Build. Mater., 225, 1152-1159. https://doi.org/10.1016/j.conbuildmat.2019.08.026.   DOI
49 Madurwar, M.V., Ralegaonkar, R.V. and Mandavgane, S.A. (2013), "Application of agro-waste for sustainable construction materials: A review", Constr. Build. Mater., 38, 872-878. https://doi.org/10.1016/j.conbuildmat.2012.09.011.   DOI
50 Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y. and Chen, H. (2012), "An overview of utilization of steel slag", Procedia Environ. Sci., 16, 791-801. https://doi.org/10.1016/j.proenv.2012.10.108.   DOI
51 Zhang, X., Zhao, S., Liu, Z. and Wang, F. (2019), "Utilization of steel slag in ultra-high performance concrete with enhanced eco-friendliness", Constr. Build. Mater., 214, 28-36. https://doi.org/10.1016/j.conbuildmat.2019.04.106.   DOI
52 Jiang, Y., Ling, T.C., Shi, C. and Pan, S.Y. (2018), "Characteristics of steel slags and their use in cement and concrete-A review", Resour. Conserv. Recycl., 136, 187-197. https://doi.org/10.1016/j.resconrec.2018.04.023.   DOI
53 Mansouri, I., Chacon, R. and Hu, J.W. (2017), "Improved predictive model to the cross-sectional resistance of CFT", J. Mech. Sci. Technol., 31(8), 3887-3895. https://doi.org/10.1007/s12206-017-0733-9.   DOI
54 Mahdavi Jafari, M. and Khayati, G.R. (2018), "Prediction of hydroxyapatite crystallite size prepared by sol-gel route: gene expression programming approach", J. Sol-Gel Sci. Technol., 86(1), 112-125. https://doi.org/10.1007/s10971-018-4601-6.   DOI
55 Majidifard, H., Jahangiri, B., Buttlar, W.G. and Alavi, A.H. (2019), "New machine learning-based prediction models for fracture energy of asphalt mixtures", Meas.: J. Int. Meas. Conf., 135, 438-451. https://doi.org/10.1016/j.measurement.2018.11.081.   DOI
56 Mansouri, I., Azmathulla, H.M. and Hu, J.W. (2018), "Gene expression programming application for prediction of ultimate axial strain of FRP-confined concrete", Electron. J. Facult. Civil Eng. Osijek-e-GFOS, 9(16), 64-76. https://doi.org/10.13167/2018.17.9.   DOI
57 Paris, J.M., Roessler, J.G., Ferraro, C.C., Deford, H.D. and Townsend, T.G. (2016), "A review of waste products utilized as supplements to Portland cement in concrete", J. Clean. Prod., 121, 1-18. https://doi.org/10.1016/j.jclepro.2016.02.013.   DOI
58 Ozbay, E., Oztas, A. and Baykasoglu, A. (2010), "Cost optimization of high strength concretes by soft computing techniques", Comput. Concrete, 7(3), 221-237. https://doi.org/10.12989/cac.2010.7.3.221.   DOI