• Title/Summary/Keyword: Minimal surface

Search Result 422, Processing Time 0.026 seconds

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites Cylinderical Shell with Multiple Delaminations (다중 층간분리부가 있는 복합재 원통쉘의 지그재그 고차이론에 기초한 유한요소 진동해석)

  • Cho Maenghyo;Oh Jinho;Kim Heung-Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.69-72
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection, which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the eigenvalue problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The present shell element should serve as a powerful tool in the prediction of natural frequency and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

Optimization of Drying Conditions for Quality Semi-dried Mulberry Fruit (Morus alba L.) using Response Surface Methodology

  • Teng, Hui;Lee, WonYoung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • Mulberry fruits were semi-dried using hot air ($60-100^{\circ}C$) or cool air ($20-40^{\circ}C$), and the effects of the drying temperature and processing time on the quality of the final dried mulberry fruits were investigated. Response surface methodology was employed to establish a statistical model and predict the conditions resulting in minimal loss of the total phenolic content (TPC) and ascorbic acid. Thus, using overlapped contour plots, the optimal conditions for producing semi-dried mulberry fruits, which reduced the moisture residue to 45% and minimized the nutrient losses of TPC and ascorbic acid, were determined for the hot-air process ($60.7^{\circ}C$ for 5.4 h) and cool-air process ($34.8^{\circ}C$ for 23.3 h). Plus, a higher drying temperature was found to lead to a faster loss of moisture and ascorbic acid, while the TPC was significantly decreased in the cool-air dried mulberry fruits due to the higher activity of polyphenol oxidase between 30 and $40^{\circ}C$.

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

A Study on Influence of Design of Unit Cell for TPMS on Self-circulation Characteristics of Air (TPMS 단위체 설계에 따른 공기의 자가 순환 특성 변화 고찰)

  • J. C. Beom;K. K. Lee;D. G. Ahn
    • Transactions of Materials Processing
    • /
    • v.33 no.4
    • /
    • pp.241-247
    • /
    • 2024
  • The triply periodic minimum surface (TPMS) shape with a complex geometry can easily manufactured from additive manufacturing processes. The TPMS shape has a high surface-to-volume ratio. In addition, the TPMS shape increases the possibility of the self-circulation when the fluid flows inside the TPMS structure. Due to these reason, the performance of the fluid flow filter can be greatly improved when the TPMS structure is applied to the filter. The aim of this paper is to investigate the influence of the design of the unit cell for TPMS on self-circulation characteristics of air using computational fluid dynamics (CFD). From the results of the CFD, the effects of the shape and the dimension of the unit cell for TPMS on the self-circulation pattern and the pressure difference are examined. Finally, a proper design of the TPMS is discussed from the viewpoint of self-circulation of air.

The effect of copper alloy scaler tip on the surface roughness of dental implant and restorative materials (구리 합금 초음파 스케일러 팁이 치과 임플란트 및 수복 재료 표면에 미치는 영향)

  • Lee, Ah-Reum;Chung, Chung-Hoon;Jung, Gyu-Un;Pang, Eun-Kyoung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.3
    • /
    • pp.177-185
    • /
    • 2014
  • Purpose: This study is designed to investigate the various impacts of different types of scaler tips such as cooper alloy base tip and the others on the surface roughness of teeth and implant by the method which is currently in clinical use. Materials and methods: Four different types of disc shaped porcelain, titanium, zirconia, and Type III gold alloy dental materials sized 15 mm diameter, 1.5 mm thickness were used for the experiment. Plastic hand curette (Group PS), cooper alloy new tip (Group IS), and stainless steel tip (Group SS) were used as testing appliances. A total of 64 specimens were used for this study; Four specimens for each material and appliance group. Surface roughness was formed with 15 degree angle in ultrasonic scaler tip and with 45 degree angle in hand curette of instrument tip and the specimen surface with 5 mm long, one horizontal-reciprocating motion per second for 30 seconds by 40 g force. To survey the surface roughness of each specimen, a field emission scanning electron microscope, an atomic force microscope, and a surface profiler were used. (Ra, ${\mu}m$). Results: According to SEM, most increased surface roughness was observed in SS group while IS groups had minimal roughness change. Measurement by atomic force microscope presented that the surface roughness of SS group was significantly greater than those of PS, IS and control groups in the type III gold alloy group (P<.05). IS group showed lesser surface roughness changes compared to SS group in porcelain and gold alloy group (P<.05). According to surface profiler, surface roughness of SS group showed greater than those of PS, IS and control groups and IS group showed lesser than those of SS group in all specimen groups. Type III gold alloy group had large changes on surface roughness than those of porcelain, titanium, zirconia (P<.05). Conclusion: The result of this study showed that newly developed copper alloy scaler tip can cause minimal roughness impacts on the surface of implant and dental materials; therefore this may be a useful alternative for prophylaxis of implant and restored teeth.

Effect of light and sediment grain size on the vertical migration of benthic diatoms

  • Du, Guo Ying;Oak, Jung-Hyun;Li, Hongbo;Chung, Ik-Kyo
    • ALGAE
    • /
    • v.25 no.3
    • /
    • pp.133-140
    • /
    • 2010
  • Using chlorophyll fluorescence, the vertical migration of benthic diatoms responding to light intensity and affected by sediment grain size was studied. Minimal fluorescence ($F_o$) of surface sediment was measured by imaging pulse amplitude modulated (Imaging-PAM) fluorometer, and used to monitor diatom biomass variation in surface sediments. The test diatoms, Amphora coffeaeformis (C. Agardh) K$\ddot{u}$tzing and Cylindrotheca closterium (Ehrenberg) Reimann & Lewin, migrated to the sediment surface under irradiance from 50 to 500 ${\mu}mol$ photons $m^{-2}s^{-1}$. However, the diatoms exhibited no evident increase of surface biomass under dark conditions, and even showed slightly decrease of surface biomass under irradiances over 1,000 ${\mu}mol$ photons $m^{-2}s^{-1}$. The light intensity inducing the maximum surface migration of A. coffeaeformis was 100 ${\mu}mol$ photons $m^{-2}s^{-1}$, while the light intensity producing the same effect for C. closterium was 250 ${\mu}mol$ photons $m^{-2}s^{-1}$. C. closterium showed higher motility than A. coffeaeformis. Faster diatom surfacing was observed in larger grain size sediments (125-335 ${\mu}m$) than smaller ones (63-125 ${\mu}m$). This study confirmed the significant influence of light as a main triggering factor behind migration, indicated the distinct effect of different sediment grain size, and highlighted the species-specific migratory ability.

Hierarchically porous carbon aerogels with high specific surface area prepared from ionic liquids via salt templating method

  • Zhang, Zhen;Feng, Junzong;Jiang, Yonggang;Feng, Jian
    • Carbon letters
    • /
    • v.28
    • /
    • pp.47-54
    • /
    • 2018
  • High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to $1000^{\circ}C$, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at $900^{\circ}C$, the specific surface area of the resultant carbon aerogels reached $2309m^2g^{-1}$. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.

Room-Temperature Deposition of ZnO Thin Film by Pulsed Vacuum Arc and Effect of Oxygen Gas Ratio on Its Electrical Properties (펄스형 진공 아크법에 의한 ZnO 박막의 상온합성 및 이의 전기적 특성에 미치는 산소분압비의 영향)

  • Shin Min-Geun;Byon Eungsun;Lee Sunghun;Kim Do-Geun;Jeon Sang-Jo;Koo Bon Heun
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.5
    • /
    • pp.193-197
    • /
    • 2005
  • Highly c-axis oriented Zinc oxide (ZnO) films were successfully deposited at room temperature by oxygen ion-assisted pulsed filtered vacuum arc. The effect of oxygen gas ratio ($O_{2}/O_{2}+Ar$ on the preferred orientation, surface morphology and resistivity of the ZnO films were investigated. Highly crystalline ZnO films with (002) orientation were obtained at over $13\%$ of oxygen gas ratio. Increasing oxygen gas ratio up to $80\%$ was found to improve crystallinity of the films. From hall measurements, it was found that the film has n-type characteristic and carrier concentration and its mobility were closely related with oxygen gas ratio. Minimal resistivity of $3.6{\times}10^{-3}{\Omega}{\cdot}cm$ was obtained in the range of $20\%$ to $40\%$ of oxygen gas ratio.

THE EFFECT OF SUREACE TREATMENTS ON THE REBONDED RESIN-BONDED RETAINERS

  • Kim Sang-Pil;Kang Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.6
    • /
    • pp.590-596
    • /
    • 2002
  • The resin : metal interface is at the basis of most bonding failures in resin-bonded prosthesis. Although debonding has been a problem with adhesive fixed partial dentures, various dentists classify them as long-term restorations. The advantages of resin-bonded fixed partial dentures include minimal tooth reduction and the possibility of rebonding. if resin-bonded protheses can be easily rebounded, it is of clinical importance to know if the lutingagents rebond as well the second time as they did originally. Several retentive systems for resin-to-metal bonding have recommended. Treatments such as electrolytic etching and silicone coating, despite the good result of bond strength, have proved to be time-consuming and technique-sensitive. Therefore a simple and more reliable method is desirable. This study evaluated the effect of metal surface treatments on the rebond strength of panavia 21 cement to a nickel-chromium(Ni-Cr) alloy. The samples were received the following surface treatments : Group No.1 (control or served as the control) treatment with sandblasting with 50um aluminum oxide and ultrasonically cleaned for 10minutes in double-deionized water, Group No.2 were no surface treatments. Group No.3 were treated with metal primer. Group No.4 were treated with sandblasting as previously described, and then metal priming. From the analysis of the results, the following conclusions were drawn. 1. Sandblasting and metal priming appears to be an effective method for treatment of metal after accidental debonding. 2. Group without surface treatment had significantly lower bond strengths compared with other groups. 3. The combination of sandblasting and metal priming may not develop superior bonding strengths compared with other techniques that used the Ni-Cr alloys. 4. Combination of cohesive and adhesive failures were the most common type observed. The results support the use of sandblasting as a viable procedure when rebonding accidentally lost adhesive partial denture. We concluded that sandblasting and metal priming of metal surface before bonding could provide the adequate bond strength during rebonding of resin-bonded fixed partial denture.

Optimization of Emulsification and Spray Drying Process for the Microencapsulation of Flavor Compounds (향기성분 미세캡슐화를 위한 유화 및 분무건조 공정 최적화)

  • Cho, Young-Hee;Shin, Dong-Suck;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.132-139
    • /
    • 2000
  • This study was conducted to optimize the emulsion process and the spray drying process for the microencapsulation of flavor compounds. Using the wall system selected, emulsion process for microencapsulation was optimized on the change of the pressure of piston-type homogenizer. Emulsification pressure of 34.5 MPa was found to be the most suitable for preparing flavor emulsion. Effects of drying temperature and atomizer speed of the spray drier on total oil, surface oil, and flavor release of the flavor powder were investigated using response surface methodology. The optimum spray drying conditions for minimal surface oil and flavor release and maximum total oil were $170{\circ}C$ inlet temperature and 15,000 rpm atomizer speed. The spray-dried powder processed with the highest drying temperature showed spherically-shaped particles with smooth surface.

  • PDF