• Title/Summary/Keyword: Minimal processing

Search Result 327, Processing Time 0.023 seconds

Development of Multi-Laser Vision System For 3D Surface Scanning (3 차원 곡면 데이터 획득을 위한 멀티 레이져 비젼 시스템 개발)

  • Lee, J.H.;Kwon, K.Y.;Lee, H.C.;Doe, Y.C.;Choi, D.J.;Park, J.H.;Kim, D.K.;Park, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.768-772
    • /
    • 2008
  • Various scanning systems have been studied in many industrial areas to acquire a range data or to reconstruct an explicit 3D model. Currently optical technology has been used widely by virtue of noncontactness and high-accuracy. In this paper, we describe a 3D laser scanning system developped to reconstruct the 3D surface of a large-scale object such as a curved-plate of ship-hull. Our scanning system comprises of 4ch-parallel laser vision modules using a triangulation technique. For multi laser vision, calibration method based on least square technique is applied. In global scanning, an effective method without solving difficulty of matching problem among the scanning results of each camera is presented. Also minimal image processing algorithm and robot-based calibration technique are applied. A prototype had been implemented for testing.

  • PDF

Femtosecond laser pattering of ITO film on flexible substrate (펨토초 레이저를 이용한 플렉시블 ITO 패터닝 연구)

  • Sohn, Ik-Bu;Kim, Young-Seop;Noh, Young-Chul
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Indium tin oxide (ITO) provides high electrical conductivity and transparency in the visible and near IR (infrared) wavelengths. Thus, it is widely used as a transparent electrode for the fabrication of liquid crystal displays (LCDs) and organic light emitting diode displays (OLRDs), photovoltaic devices, and other optical applications. Lasers have been used for removing coating on polymer substrate for flexible display and electronic industry. In selective removal of ITO layer, laser wavelength, pulse energy, scan speed, and the repetition rate of pulses determine conditions, which are efficient for removal of ITO coating without affecting properties of the polymer substrate. ITO coating removal with a laser is more environmentally friendly than other conventional etching methods. In this paper, pattering of ITO film from polymer substrates is described. The Yb:KGW femtosecond laser processing system with a pulse duration of 250fs, a wavelength of 1030nm and a repetition rate of 100kHz was used for removing ITO coating in air. We can remove the ITO coating using a scanner system with various pulse energies and scan speeds. We observed that the amount of debris is minimal through an optical and a confocal microscope, and femtosecond laser pulses with 1030nm wavelength are effective to remove ITO coating without the polymer substrate ablation.

  • PDF

Preformance Comparison of MLE Technique with POF(Pencil of Functions) Method for SEM Parameter Estimation (SEM 파라메타 측정에 대한 MLE 기법과 POF 기법의 성능비교)

  • Kim, Deok-Nyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.511-516
    • /
    • 1994
  • Parameter estimation techniques are discussed for the complex frequency analysis of an electromagnetic scatterer. The paper suggests how the Maximum Likelihood estimation technique can be applied for this purpose. Experiments on hypothetical data sets demonstrate that the Maximum Likelihood technique is better than the Pencil of Functions technique. Although there have been several techniques including MLE suggested as tools of the parameter estimation, the proposed method has strong advantages under the noise-contaminated sample data environment because it uses minimal dimension of system matrix that stands totally independent of the length of extracted data set.

  • PDF

Conncetiveity of X-Hypercubes and Its Applications (X-Hypercubes의 연결성과 그 응용)

  • Gwon, Gyeong-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.1
    • /
    • pp.92-98
    • /
    • 1994
  • The hypercube-like interconncetion network,X-hypercubes,has the same number of nodes and edges as conventional hypercubes.By slightly changing the interconneton way between nodes,however,X-hypercubes reduces the diameter by almost half.Thus the communication delay in X-hypercubes can be expected to be much lower than that in hypercubes. This paper gives a new definition of X-hypercubes establishing clear-cut condition of connection between two nodes.As appliction examples of the new definition,this paper presents simple embeddings of hypercubes in X-hypercubes and vice versa.This means that any programs written for hypercubes can be transported onto X-hypercubes and vice versa with minimal overhead.This paper also present bitonic merge sort for X-hypercubes by simulation that for hypercubes.

  • PDF

Class-Labeling Method for Designing a Deep Neural Network of Capsule Endoscopic Images Using a Lesion-Focused Knowledge Model

  • Park, Ye-Seul;Lee, Jung-Won
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.171-183
    • /
    • 2020
  • Capsule endoscopy is one of the increasingly demanded diagnostic methods among patients in recent years because of its ability to observe small intestine difficulties. It is often conducted for 12 to 14 hours, but significant frames constitute only 10% of whole frames. Thus, it has been designed to automatically acquire significant frames through deep learning. For example, studies to track the position of the capsule (stomach, small intestine, etc.) or to extract lesion-related information (polyps, etc.) have been conducted. However, although grouping or labeling the training images according to similar features can improve the performance of a learning model, various attributes (such as degree of wrinkles, presence of valves, etc.) are not considered in conventional approaches. Therefore, we propose a class-labeling method that can be used to design a learning model by constructing a knowledge model focused on main lesions defined in standard terminologies for capsule endoscopy (minimal standard terminology, capsule endoscopy structured terminology). This method enables the designing of a systematic learning model by labeling detailed classes through differentiation of similar characteristics.

PC-Camera based Monitoring for Unattended NC Machining (무인가공을 위한 PC 카메라 기반의 모니터링)

  • Song, Shi-Yong;Ko, Key-Hoon;Choi, Byoung-Kyu
    • IE interfaces
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2006
  • In order to make best use of NC machine tools with minimal labor costs, they need to be in operation 24 hours a day without being attended by human operators except for setup and tool changes. Thus, unattended machining is becoming a dream of every modern machine shop. However, without a proper mechanism for real-time monitoring of the machining processes, unattended machine could lead to a disaster. Investigated in this paper are ways to using PC camera as a real-time monitoring system for unattended NC milling operations. This study defined five machining states READY, NORMAL MACHINING, ABNORMAL MACHINING, COLLISION and END-OF-MACHINING and modeled them with DEVS (discrete event system) formalism. An image change detection algorithm has been developed to detect the table movements and a flame and smoke detection algorithm to detect unstable cutting process. Spindle on/off and cutting status could be successfully detected from the sound signals. Initial experimentation shows that the PC camera could be used as a reliable monitoring system for unattended NC machining.

Energy Efficient Cross Layer Multipath Routing for Image Delivery in Wireless Sensor Networks

  • Rao, Santhosha;Shama, Kumara;Rao, Pavan Kumar
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1347-1360
    • /
    • 2018
  • Owing to limited energy in wireless devices power saving is very critical to prolong the lifetime of the networks. In this regard, we designed a cross-layer optimization mechanism based on power control in which source node broadcasts a Route Request Packet (RREQ) containing information such as node id, image size, end to end bit error rate (BER) and residual battery energy to its neighbor nodes to initiate a multimedia session. Each intermediate node appends its remaining battery energy, link gain, node id and average noise power to the RREQ packet. Upon receiving the RREQ packets, the sink node finds node disjoint paths and calculates the optimal power vectors for each disjoint path using cross layer optimization algorithm. Sink based cross-layer maximal minimal residual energy (MMRE) algorithm finds the number of image packets that can be sent on each path and sends the Route Reply Packet (RREP) to the source on each disjoint path which contains the information such as optimal power vector, remaining battery energy vector and number of packets that can be sent on the path by the source. Simulation results indicate that considerable energy saving can be accomplished with the proposed cross layer power control algorithm.

Cascaded Residual Densely Connected Network for Image Super-Resolution

  • Zou, Changjun;Ye, Lintao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2882-2903
    • /
    • 2022
  • Image super-resolution (SR) processing is of great value in the fields of digital image processing, intelligent security, film and television production and so on. This paper proposed a densely connected deep learning network based on cascade architecture, which can be used to solve the problem of super-resolution in the field of image quality enhancement. We proposed a more efficient residual scaling dense block (RSDB) and the multi-channel cascade architecture to realize more efficient feature reuse. Also we proposed a hybrid loss function based on L1 error and L error to achieve better L error performance. The experimental results show that the overall performance of the network is effectively improved on cascade architecture and residual scaling. Compared with the residual dense net (RDN), the PSNR / SSIM of the new method is improved by 2.24% / 1.44% respectively, and the L performance is improved by 3.64%. It shows that the cascade connection and residual scaling method can effectively realize feature reuse, improving the residual convergence speed and learning efficiency of our network. The L performance is improved by 11.09% with only a minimal loses of 1.14% / 0.60% on PSNR / SSIM performance after adopting the new loss function. That is to say, the L performance can be improved greatly on the new loss function with a minor loss of PSNR / SSIM performance, which is of great value in L error sensitive tasks.

The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber

  • Ben Tordoff;Cheryl Hartfield;Andrew J. Holwell;Stephan Hiller;Marcus Kaestner;Stephen Kelly;Jaehan Lee;Sascha Muller;Fabian Perez-Willard;Tobias Volkenandt;Robin White;Thomas Rodgers
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.

Nonthermal Sterilization of Animal-based Foods by Intense Pulsed Light Treatment

  • Gyeong Mi Lee;Jung-Kue Shin
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.309-325
    • /
    • 2024
  • The consumption of meat has been increasing, leading to a dynamic meat and meat processing industry. To maintain the quality and safety of meat products, various technologies have been explored, including intense pulsed light (IPL) technology. Several factors affect the inactivation of microorganisms by IPL treatment, including light intensity (fluence), treatment duration, pulse frequency, and the distance between the lamp and the samples. Meat products have been studied for IPL treatment, resulting in microbial reductions of approximately 0.4-2.4 Log. There are also impacts on color, sensory attributes, and physico-chemical quality, depending on treatment conditions. Processed meat products like sausages and ham have shown microbial reductions of around 0.1-4 Log with IPL treatment. IPL treatment has minimal impact on color and lipid oxidation in these products. Egg products and dairy items can also benefit from IPL treatment, achieving microbial reductions of around 1-7.8 Log. The effect on product quality varies depending on the treatment conditions. IPL technology has shown promise in enhancing the safety and quality of various food products, including meat, processed meat, egg products, and dairy items. However, the research results on animal-based food are not diverse and fragmentary, this study discusses the future research direction and industrial application through a review of these researches.