• Title/Summary/Keyword: Mineral exploration

Search Result 571, Processing Time 0.026 seconds

Improvement of Reverse-time Migration using Homogenization of Acoustic Impedance (음향 임피던스 균질화를 이용한 거꿀시간 참반사보정 성능개선)

  • Lee, Gang Hoon;Pyun, Sukjoon;Park, Yunhui;Cheong, Snons
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.76-83
    • /
    • 2016
  • Migration image can be distorted due to reflected waves in the source and receiver wavefields when discontinuities of input velocity model exist in seismic imaging. To remove reflected waves coming from layer interfaces, it is a common practice to smooth the velocity model for migration. If the velocity model is smoothed, however, the subsurface image can be distorted because the velocity changes around interfaces. In this paper, we attempt to minimize the distortion by reducing reflection energy in the source and receiver wavefields through acoustic impedance homogenization. To make acoustic impedance constant, we define fake density model and use it for migration. When the acoustic impedance is constant over all layers, the reflection coefficient at normal incidence becomes zero and the minimized reflection energy results in the improvement of migration result. To verify our algorithm, we implement the reverse-time migration using cell-based finite-difference method. Through numerical examples, we can note that the migration image is improved at the layer interfaces with high velocity contrast, and it shows the marked improvement particularly in the shallow part.

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.

Explorations of Hydrothermal Vents in Southern Mariana Arc Submarine Volcanoes using ROV Hemire (심해무인잠수정 해미래를 이용한 남마리아나 아크 해저화산 열수분출공 탐사)

  • Lee, Pan-Mook;Jun, Bong-Huan;Baek, Hyuk;Kim, Banghyun;Shim, Hyungwon;Park, Jin-Yeong;Yoo, Seong-Yeol;Jeong, Woo-Young;Baek, Sehun;Kim, Woong-Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.389-399
    • /
    • 2016
  • This paper presents the explorations of hydrothermal vents located in the Marina Arc and Back Arc Basin using the deep-sea ROV Hemire. These explorations were conducted by KRISO and KIOST to demonstrate the capability of Hemire in various applications for deep-sea scientific research. The missions included the following: (1) to search the reported vents, (2) conduct visual inspections, (3) deploy/recover a sediment trap and bait traps, (4) sample sediment/water/rock, (5) measure the magnetic field at the vent site, and (6) acquire a detailed map using multi-beam sonar near the bottom. We installed three HD cameras for precise visual inspection, a high-temperature thermometer, a three-component magnetometer, and a multi-beam sonar to acquire details of the bottom contour or identify vents in the survey area. The explorations were performed in an expedition from March 23 to April 5, 2016, and the missions were successfully completed. This paper discusses the operational process, navigation, and control of Hemire, as well as the exploration results.

Broadband Processing of Conventional Marine Seismic Data Through Source and Receiver Deghosting in Frequency-Ray Parameter Domain (주파수-파선변수 영역에서 음원 및 수신기 고스트 제거를 통한 전통적인 해양 탄성파 자료의 광대역 자료처리)

  • Kim, Su-min;Koo, Nam-Hyung;Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.220-227
    • /
    • 2016
  • Marine seismic data have not only primary signals from subsurface but also ghost signals reflected from the sea surface. The ghost decreases temporal resolution of seismic data because it attenuates specific frequency components. For eliminating the ghost signals effectively, the exact ghost delaytimes and reflection coefficients are required. Because of undulation of the sea surface and vertical movements of airguns and streamers, the ghost delaytime varies spatially and randomly while acquiring seismic data. The reflection coefficient is a function of frequency, incidence angle of plane-wave and the sea state. In order to estimate the proper ghost delaytimes considering these characteristics, we compared the ghost delaytimes estimated with L-1 norm, L-2 norm and kurtosis of the deghosted trace and its autocorrelation on synthetic data. L-1 norm of autocorrelation showed a minimal error and the reflection coefficient was calculated using Kirchhoff approximation equation which can handle the effect of wave height. We applied the estimated ghost delaytimes and the calculated reflection coefficients to remove the source and receiver ghost effects. By removing ghost signals, we reconstructed the frequency components attenuated near the notch frequency and produced the migrated stack section with enhanced temporal resolution.

A Case Study of Sea Bottom Detection Within the Expected Range and Swell Effect Correction for the Noisy High-resolution Air-gun Seismic Data Acquired off Yeosu (잡음이 포함된 여수근해 고해상 에어건 탄성파 탐사자료에 대한 예상 범위에서의 해저면 선정 및 너울영향 보정 사례)

  • Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.116-131
    • /
    • 2019
  • In order to obtain high-quality high-resolution marine seismic data, the survey needs to be carried out at very low-sea condition. However, the survey is often performed with a slight wave, which degrades the quality of data. In this case, it is possible to improve the quality of seismic data by detecting the exact location of the sea bottom signal and eliminating the influence of waves or swells automatically during data processing. However, if noise is included or the sea bottom signal is weakened due to sea waves, sea bottom detection errors are likely to occur. In this study, we applied a method reducing such errors by estimating the sea bottom location, setting a narrow detection range and detecting the sea bottom location within this range. The expected location of the sea bottom was calculated using previously detected sea bottom locations for each channel of multi-channel data. The expected location calculated in each channel is also compared and verified with expected locations of other channels in a shot gather. As a result of applying this method to the noisy 8-channel high-resolution air-gun seismic data acquired off Yeosu, the errors in selecting the strong noise before sea bottom or the strong subsurface reflected signal after the sea bottom signal are remarkably reduced and it is possible to produce the high-quality seismic section with the correction of ~ 2.5 m swell effect.

Formation Estimation of Shaly Sandstone Reservoir using Joint Inversion from Well Logging Data (복합역산을 이용한 물리검층자료로부터의 셰일성 사암 저류층의 지층 평가)

  • Choi, Yeonjin;Chung, Woo-Keen;Ha, Jiho;Shin, Sung-ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Well logging technologies are used to measure the physical properties of reservoirs through boreholes. These technologies have been utilized to understand reservoir characteristics, such as porosity, fluid saturation, etc., using equations based on rock physics models. The analysis of well logs is performed by selecting a reliable rock physics model adequate for reservoir conditions or characteristics, comparing the results using the Archie's equation or simandoux method, and determining the most feasible reservoir properties. In this study, we developed a joint inversion algorithm to estimate physical properties in shaly sandstone reservoirs based on the pre-existing algorithm for sandstone reservoirs. For this purpose, we proposed a rock physics model with respect to shale volume, constructed the Jacobian matrix, and performed the sensitivity analysis for understanding the relationship between well-logging data and rock properties. The joint inversion algorithm was implemented by adopting the least-squares method using probabilistic approach. The developed algorithm was applied to the well-logging data obtained from the Colony gas sandstone reservoir. The results were compared with the simandox method and the joint inversion algorithms of sand stone reservoirs.

Comparison of the 2D/3D Acoustic Full-waveform Inversions of 3D Ocean-bottom Seismic Data (3차원 해저면 탄성파 탐사 자료에 대한 2차원/3차원 음향 전파형역산 비교)

  • Hee-Chan, Noh;Sea-Eun, Park;Hyeong-Geun, Ji;Seok-Han, Kim;Xiangyue, Li;Ju-Won, Oh
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.203-213
    • /
    • 2022
  • To understand an underlying geological structure via seismic imaging, the velocity information of the subsurface medium is crucial. Although the full-waveform inversion (FWI) method is considered useful for estimating subsurface velocity models, 3D FWI needs a lot-of computing power and time. Herein, we compare the calculation efficiency and accuracy of frequency-domain 2D and 3D acoustic FWIs. Thereafter, we demonstrate that the artifacts from 2D approximation can be partially suppressed via frequency-domain 2D FWI by employing diffraction angle filtering (DAF). By applying DAF, which employs only big reflection angle components, the impact of noise and out-of-plane reflections can be reduced. Additionally, it is anticipated that the DAF can create long-wavelength velocity structures for 3D FWI and migration.

Static Effect in Magnetotelluric Responses: An Implication from the EM Integral Equation (MT 탐사 반응에서 정적효과: 적분방정식을 통한 고찰)

  • Yoonho Song
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.3
    • /
    • pp.181-195
    • /
    • 2024
  • This tutorial explains that the static effect in the magnetotelluric (MT) survey is a physical phenomenon caused by charges accumulated on the boundaries of subsurface inhomogeneities. To facilitate understanding of the physical phenomenon, differences between static induction and charge accumulation on the boundary are explained and analyzed with help of schematic illustrations. Subsequently, from the electromagnetic (EM) integral equation formulation, it is clearly shown that the secondary electric field due to charges accumulated on the interface in the presence of the primary field appears as the static effect. Therefore, except in the cases of the layered earth or a two-dimensional earth with transverse magnetic (TM) mode excitation, the static effect always exists in MT responses and further, it is not 'static' but rather frequency dependent. Despite the fact that the static effect is a secondary electric field due to inhomogeneity, inevitable under-sampling in the frequency and spatial domains prevent the effect from being handled properly in numerical inversion. Therefore, considering the practical aspects of the MT survey, which cannot be a continuous measurement covering the entire survey area over a wide frequency band, a three-dimensional (3-D) inversion incorporating the static shift as a constraint with the Gaussian distribution is introduced. To enhance understanding of the integral equation EM modeling, the formulation of the 3-D integral equation and mathematical analyses of the Green tensor and scattering current are described in detail in the Appendix.

Variation of Gold Content in Rocks and Minerals from the Seongsan and Ogmaesan Clay Deposits in the Haenam Area, Korea (해남지역 성산 및 옥매산 점토광산에서와 금함량 변화)

  • Yoon, Chung-Han
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.571-577
    • /
    • 1995
  • Several acid-sulfate clay deposits associated with silicic magmas occur in the Haenam area of the southwestern part of Korea. Geology of the studied area consists of tuffs, granitic rocks, quartz porphyry, rhyolite, andesite and sedimentary rocks. The granitic rocks and quartz porphyry intruded tuffs and sedimentary rocks. The rhyolite and tuffs around the mines have undergone hydrothermally weak or strong alteration. Gold contents with major and trace elements have been determined for a total of sixty-seven specimens of fresh igneous rocks, wall rocks and minerals such as dickite and alunite by graphite furnace atomic absorption spectrometer and inductively coupled plasma. Gold is enriched in the alunite vein and the silicified zone, but is depleted in dickites and hydrothermally altered rocks with dickite of the Seongsan deposit. Gold is especially concentrated near the faults or conjunction area of two faults. High content of gold is shown in the mineral assemblages of alunitequartz- pyrite in the alunite vein and silicic zone of the Seongsan deposit compared with that of minerals and rocks from another deposits distributed in the studied area. Gold content in tuffs and dickites with pyrite is generally low. Gold content in silicified tuff tends to show positive correlations with content of As, Hg and Sb. Variation trends of Cd, Hg and Sb are similar to those of gold content. From the result of gold content variations, gold may be transported and concentrated by mineralizing solutions ascending along the cracks like fault. Therefore, it is important to survey alunite vein and silicified zone at the conjunction of faults, and to analyze pathfinder elements such as As, Hg and Sb for geological and geochemical exploration of gold in the studied deposits.

  • PDF

Element Dispersion by the Wallrock Alteration of Janggun Lead-Zinc-Silver Deposit (장군 연-아연-은 광상의 모암변질에 따른 원소분산)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.623-641
    • /
    • 2012
  • The Janggun lead-zinc-silver deposit is hydrothermal-metasomatic deposit. We have sampled wallrock, hydrother-maly-altered rock and lead-zinc-silver ore vein to study the element dispersion during wallrock alteration. The hydrothermal alteration that is remarkably recognized at this deposit consists of rhodochrositization and dolomitization. Wallrock is dolomite and limestone that consisit of calcite, dolomite, quartz, phlogopite and biotite. Rhodochrosite zone occurs near lead-zinc-silver ore vein and include mainly rhodochrosite with amounts of calcite, dolomite, kutnahorite, arsenopyrite, pyrite, chalcopyrite, sphalerite, galena and stannite. Dolomite zone occurs far from lead-zinc-silver ore vein and is composed of mainly dolomite and minor calcite, rhodochrosite, pyrite, sphalerite, chalcopyrite, galena and stannite. The correlation coefficients among major, trace and rare earth elements during wallrock alteration show high positive correlations(dolomite and limestone = $Fe_2O_3(T)$/MnO, Ga/MnO and Rb/MnO), high negative correlations(dolomite = MgO/MnO, CaO/MnO, $CO_2$/MnO, Sr/MnO; limestone = CaO/MnO, Sr/MnO). Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, MnO, As, Au, Cd, Cu, Ga, Pb, Rb, Sb, Sc, Sn and Zn. Remarkable loss elements are CaO, $CO_2$, MgO and Sr. Therefore, elements(CaO, $CO_2$, $Fe_2O_3(T)$, MgO, MnO, Ga, Pb, Rb, Sb, Sn, Sr and Zn) represent a potential tools for exploration in hydrothermal-metasomatic lead-zinc-silver deposits.