Browse > Article
http://dx.doi.org/10.9719/EEG.2012.45.6.623

Element Dispersion by the Wallrock Alteration of Janggun Lead-Zinc-Silver Deposit  

Yoo, Bong Chul (Mineral Resources Department, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Economic and Environmental Geology / v.45, no.6, 2012 , pp. 623-641 More about this Journal
Abstract
The Janggun lead-zinc-silver deposit is hydrothermal-metasomatic deposit. We have sampled wallrock, hydrother-maly-altered rock and lead-zinc-silver ore vein to study the element dispersion during wallrock alteration. The hydrothermal alteration that is remarkably recognized at this deposit consists of rhodochrositization and dolomitization. Wallrock is dolomite and limestone that consisit of calcite, dolomite, quartz, phlogopite and biotite. Rhodochrosite zone occurs near lead-zinc-silver ore vein and include mainly rhodochrosite with amounts of calcite, dolomite, kutnahorite, arsenopyrite, pyrite, chalcopyrite, sphalerite, galena and stannite. Dolomite zone occurs far from lead-zinc-silver ore vein and is composed of mainly dolomite and minor calcite, rhodochrosite, pyrite, sphalerite, chalcopyrite, galena and stannite. The correlation coefficients among major, trace and rare earth elements during wallrock alteration show high positive correlations(dolomite and limestone = $Fe_2O_3(T)$/MnO, Ga/MnO and Rb/MnO), high negative correlations(dolomite = MgO/MnO, CaO/MnO, $CO_2$/MnO, Sr/MnO; limestone = CaO/MnO, Sr/MnO). Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, MnO, As, Au, Cd, Cu, Ga, Pb, Rb, Sb, Sc, Sn and Zn. Remarkable loss elements are CaO, $CO_2$, MgO and Sr. Therefore, elements(CaO, $CO_2$, $Fe_2O_3(T)$, MgO, MnO, Ga, Pb, Rb, Sb, Sn, Sr and Zn) represent a potential tools for exploration in hydrothermal-metasomatic lead-zinc-silver deposits.
Keywords
Janggun lead-zinc-silver deposit; wallrock alteration; element dispersion; gain/loss; pathfinder;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ahn, K.S., Jeong, H.H. and Lee, H.K. (1993) Prograde reaction series in metapelites around the Janggun mine. Mining Geology, v.26, p.473-487
2 Barber, C. (1974) Major and trace element associations in limestones and dolomites. Chemical Geology, v.14, p.273-280.   DOI
3 Bellanca, A., Disalvo, P., Moller, P., Neri, R. and Schley, F. (1981) Rare-earth and minor element distribution and petrographic features of fluorites and associated Mesozoic limestones of northwestern Sicily. Chemical Geology, v.32, p.255-269.   DOI
4 Chang, H.W. and Lee, K.S. (1991) Behavior of elements in hydrothermal alteration zones of granitic rocks : Examples from the Mugeug granodiorite and the Naeduckri granite, South Korea. Journal of Geological Society of Korea. v.27, p.156-170.
5 Condie, K.C., Wilks, M., Rosen, D.M. and Zlobin, V.L. (1991) Geochemistry of metasediments from the Precambrian Hapschan series, eastern Anabar shield, Siberia. Precambrian Research, v.50, p.37-47.   DOI
6 Grant, J.A. (1986) The isocon diagram-A simple solution to Gresens' equation for metasomatic alteration. Economic Geology, v.81, p.1976-1982.   DOI
7 Gresens, R.L. (1967) Composition-volume relationships of metasomatism. Chemical Geology, v.2, p.47-65.   DOI   ScienceOn
8 Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The 'North American Shale Composite': its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, v.48, p.2469-2482.   DOI   ScienceOn
9 Haskin, M.A. and Haskin, L.A. (1966) Rare earths in European shales: a redetermination. Science, v.154, p.507-509.
10 Hofmann, A. (1972) Chromatographic theory of infiltration metasomatism and its application to feldspar. American Journal of Sciences, v.272, p.69-90.
11 Hwang, I.C. (1968) Report on the Sam Han Chang Gun manganese deposits. Mining Geology, v.1, p.9-34.
12 Kho, S.J. (1987) Exploration and development in the Janggun Pb-Zn mine. Mining Geology, v.20, p.289-303.
13 Hwang, I.H. and Chon, H.T. (1994a) Wallrock alteration and primary dispersion of elements in the vicinity of the Mugeug gold-bearing quartz veins. Economic and Environmental Geology, v.27, p.387-396.
14 Hwang, I.H. and Chon, H.T. (1994b) Primary dispersion of elements in altered wallrocks around the gold-bearing quartz veins the Okgye mine. Economic and Environmental Geology, v.27, p.549-556.
15 Jarvis, J.C., Wildeman, T.R. and Banks, N.G. (1975) Rare earths in the Leadville limestone and its marble derivates. Chemical Geology, v.16, p.27-37.   DOI
16 Kang, J.H., Kim, H.S. and Oh, S.B. (1997) Geological structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea: Crustal evolution and environmental geology of the central part of the north Sobaegsan massif, Korea. Journal of Petrological Society of Korea, v.6, p.244-259.
17 Kang, J.H., Oh, S.B. and Kim, H.S. (1998) Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the north Sobaegsan massif in the Janggunbong area, Korea. Journal of Petrological Society of Korea, v.7, p.190- 206.
18 Kim, K.H. (1986) Origin of manganese carbonates in the Janggun mine, South Korea. Mining Geology, v.19, p.109-122.
19 Kim, S.J. (1968a) Manganese oxide minerals from Janggun manganese mine, Korea. Journal of Geological Society of Korea, v.4, p.57-76.
20 Kim, K.Y., Kim, H.S., Oh, C.H., Park, C.S., Kang, J.H. and Ryu, Y.B. (1996) Poly-metamorphism of Pre-Cambrian to Paleozoic metasedimentry rocks in Janggunbong area, Korea: Crustal evolution and environmental geology of the central part of the north Sobaegsan massif, Korea. Journal of Petrological Society of Korea, v.5, p.168-187.
21 Kim, S.J. (1968b) Formation of manganese carbonate minerals in Janggun manganese mine, Korea. Journal of Geological Society of Korea, v.4, p.167-188.
22 Kim, S.J. (1969) Mineragraphic study on the sulfide minerals associated with manganese ores from Janggun mine, Korea. Journal of Geological Society of Korea, v.5, p.83-101.
23 Kim, S.J. (1970) Mineralogy and genesis of the manganese ores from Janggun mine, Korea. Journal of Geological Society of Korea, v.6, p.135-186.
24 Kim, S.J. (1975) Janggunite, a new mineral from the Janggun mine, Bonghwa, Korea. Mining Geology, v.8, p.117-124.
25 Lee, H.K. and Imai, N. (1986) Stannite from the Janggun mine, Republic of Korea: Contributions to the knowledge of ore-forming minerals in the Janggun leadzinc- silver (3). Mining Geology, v.19, p.121-130.
26 Lee, C.H., Song, S.H. and Lee, H.K. (1996a) Mg-skarn minerals from magnetite deposits of the Janggun mine, Korea. Economic and Environmental Geology, v.29, p.11-19.
27 Lee, H.K., Lee, C.H. and Kim, S.J. (1998) Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Mineralium Deposita, v.33, p.379-390.   DOI
28 Lee, D.S. (1967) Geological study of Janggun manganese mine. Journal of Geological Society of Korea, v.3, p.51- 59.
29 Lee, H.K., Ko, S.J. and Imai, N. (1990) Genesis of the lead-zinc-silver and iron deposits of the Janggun mine, as related to their structural features: Structural control and wallrock alteration of ore formation. Mining Geology, v.23, p.161-181.
30 Lee, H.K., Lee, C.H. and Kim, S.J. (1996b) Geochemistry of stable isotope and mineralization age of magnetite deposits in the Janggun mine, Korea. Economic and Environmental Geology, v.29, p.411-419.
31 Maclean, W.H. and Kranidiotis, P. (1987) Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, v.82, p.951- 962.   DOI
32 Lee, H.K., Lee, C.H. and Song, S.H. (1996c) Ore minerals and mineralization conditions of magnetite deposits in the Janggun mine, Korea. Economic and Environmental Geology, v.29, p.1-9.
33 Lee, M.S. (1985) Sulfur and carbon isotope studies of principal metallic deposits in the metallogenic province of the Taebaeg Mt. region, Korea. Mining Geology, v.18, p.247-251.
34 Maclean, W.H. and Barrett, T.J. (1993) Lithogeochemical techniques using immobile elements. Journal of Geochemical Exploration, v.48, p.109-133.   DOI
35 Moon, S.H, and Park, H.I. (1994) Alterations of granite gneiss and their genetic relationship to tin mineralization in the Uljin area. Journal of Geological Society of Korea, v.30, p.125-139.
36 Thompson, G., Bankston, D.C. and Pasley, S.M. (1970) Trace element data for reference carbonate rocks. Chemical Geology, v.6, p.165-170.   DOI
37 Oh, D.G. and Chon, H.T. (1993) Geochemical dispersion of elements in volcanic wallrocks of pyrophyllite deposits in Milyang area, Kyeongnam province. Mining Geology, v.26, p.337-347.
38 Park, K.H. and Chang, H.W. (2005) Pb isotopic composition of Yeonhwa and Janggun Pb-Zn ore deposits and origin of Pb: Role of Precambrian crustal basement and Mesozoic igneous rocks. Journal of Petrological Society of Korea, v.14, p.141-148.
39 Taylor, S.R. and McLennan, S.M. (1985) The continental crust: Its composition and evolution. Blackwell, Oxford, 312p.
40 Yoo, B.C., Chi, S.J., Lee, G.J., Lee, J.K. and Lee, H.K. (2007a) Element dispersion and wall-rock alteration from Daebong gold-silver deposit, Republic of Korea. Economic and Environmental Geology, v.40, p.713- 726.   과학기술학회마을
41 Yoo, B.C., Choi, H.S. and Koh, S.M. (2011c) Element dispersion and wallrock alteration of TA26 seamount, Tonga arc. Economic and Environmental Geology, v.44, p.359-372.   DOI
42 Yoo, B.C., Lee, G.J., Lee, J.K., Ji, E.K. and Lee, H.K. (2009b) Element dispersion and wallrock alteration from Samgwang deposit. Economic and Environmental Geology, v.42, p.177-193.
43 Yoon, C.H. (1993) Gold abundance in acid-sulfate alteration zone of the Ogmaesan-Seongsan ore deposits in Haenam area, Korea. Mining Geology, v.26, p.155-166.