DOI QR코드

DOI QR Code

A Case Study of Sea Bottom Detection Within the Expected Range and Swell Effect Correction for the Noisy High-resolution Air-gun Seismic Data Acquired off Yeosu

잡음이 포함된 여수근해 고해상 에어건 탄성파 탐사자료에 대한 예상 범위에서의 해저면 선정 및 너울영향 보정 사례

  • Lee, Ho-Young (Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resources)
  • 이호영 (한국지질자원연구원 석유해저연구본부)
  • Received : 2019.07.08
  • Accepted : 2019.08.06
  • Published : 2019.08.31

Abstract

In order to obtain high-quality high-resolution marine seismic data, the survey needs to be carried out at very low-sea condition. However, the survey is often performed with a slight wave, which degrades the quality of data. In this case, it is possible to improve the quality of seismic data by detecting the exact location of the sea bottom signal and eliminating the influence of waves or swells automatically during data processing. However, if noise is included or the sea bottom signal is weakened due to sea waves, sea bottom detection errors are likely to occur. In this study, we applied a method reducing such errors by estimating the sea bottom location, setting a narrow detection range and detecting the sea bottom location within this range. The expected location of the sea bottom was calculated using previously detected sea bottom locations for each channel of multi-channel data. The expected location calculated in each channel is also compared and verified with expected locations of other channels in a shot gather. As a result of applying this method to the noisy 8-channel high-resolution air-gun seismic data acquired off Yeosu, the errors in selecting the strong noise before sea bottom or the strong subsurface reflected signal after the sea bottom signal are remarkably reduced and it is possible to produce the high-quality seismic section with the correction of ~ 2.5 m swell effect.

고품질의 고해상 해저 탄성파 탐사자료를 얻기 위해서는 해상의 파도가 매우 낮은 환경에서 탐사가 이루어져야 하지만, 약간의 파도가 있는 상태에서 탐사를 수행하는 경우가 많으며 이로 인하여 자료의 품질이 저하된다. 이러한 경우에는 자료처리 과정에서 해저면 신호의 정확한 위치를 파악하여 자동적으로 파도 또는 너울의 영향을 제거함으로써 탄성파 자료의 품질을 향상시킬 수 있다. 그러나 파도의 영향으로 인하여 잡음이 포함되거나 해저면 신호가 약해진 자료에서는 해저면 위치 선정에 오류가 발생하기 쉽다. 이 연구에서는 해저면의 위치를 예상하여 좁은 선정 범위를 설정한 후 이 범위 내에서 해저면의 위치를 선정함으로써 이와 같은 오류를 감소시키는 방법을 사용하였다. 해저면 예상 위치는 다중채널 자료에서 각 채널별로 이전에 선정한 해저면의 위치들을 이용하여 산출하였다. 또한 채널별로 산출한 해저면 예상 위치를 샷모음 내에서 다른 해저면 예상 위치와 비교하여 검증하였다. 이와 같은 방법을 잡음이 포함된 여수근해 8채널 고해상 에어건 탐사자료에 적용한 결과, 해저면 신호 이전의 잡음이나 이후의 강한 반사 신호를 선정하는 오류가 현저하게 감소되었으며, 약 2.5 m의 너울영향을 보정한 고품질의 탄성파 단면도를 제작할 수 있었다.

Keywords

References

  1. Akram, J., 2011, Automatic P-wave arrival time picking method for seismic and microseismic data, CSEG Conference Abstracts.
  2. Allen, R., 1978, Automatic earthquake recognition and timing from single traces, Bull. Seismol. Soc. Amer., 68(5), 1521-1532.
  3. Chen, Z., and Stewart, R., 2006, A multi-window algorithm for real-time automatic detection and picking of P-phases of seismic events, CREWES Research Report, 18, 15.1-15.9.
  4. Coppens, F., 1985, First arrivals picking on common-offset trace collections for automatic estimation of static corrections, Geophys. Prospect., 33(8), 1212-1231. https://doi.org/10.1111/j.1365-2478.1985.tb01360.x
  5. Geyer, R. A., 1983, CRC Handbook of geophysical exploration at sea, CRC Press, Inc, Florida, 77-122.
  6. Gutowski, M., Breitzke, M., and SpieB, V., 2002, Fast static correction methods for high-frequency multichannel marine seismic reflection data: A high-resolution seismic study of channel-levee systems on the Bengal Fan, Mar. Geophys. Res., 23(1), 57-75. https://doi.org/10.1023/A:1021240415963
  7. Kanasewich, E. R., 1981, Time sequence analysis in geophysics, Univ. of Alberta Press, Edmonton, Alberta, Canada, 361-370.
  8. Kim, J. C., Lee, H. Y., Kim, J. S., and Kang, D. H., 2003, Suppression of swell effect in high-resolution marine seismic data using cross-correlation scheme, Journal of the Korean Geophysical Society, 6(1), 31-38 (in Korean with English abstract).
  9. Kim, J.-H., and Kim, H.-D., 2005, Automatic bottom detection and horizontal distance correction of the high-resolution marine seismic profile, Proceedings of the International Offshore and Polar Engineering Conference, 273-277.
  10. Lee, H.-Y., Hyun, B.-K., and Kong, Y.-S., 1996, PC-based acquisition and processing of high-resolution marine seismic data, Geophysics, 61(6), 1804-1812. https://doi.org/10.1190/1.1444096
  11. Lee, H.-Y., Kim, W., Koo, N.-H., Park, K.-P., Yoo, D.-G., Kang, D.-H., Kim, Y.-G., Seo, G.-S., and Hwang, K.-D., 2014, Resolution analysis of shallow marine seismic data acquired using an airgun and an 8-channel streamer cable, J. Appl. Geophy., 105, 203-212. https://doi.org/10.1016/j.jappgeo.2014.03.021
  12. Lee, H.-Y., Koo, N.-H., Kim, W., Kim, B.-Y., Cheong, S., and Kim, Y.-J., 2013, Swell effect correction for the highresolution marine seismic data, Jigu-Mulli-wa-Mulli-Tamsa, 16(4), 240-249 (in Korean with English abstract).
  13. Lee, H.-Y., Koo, N.-H., Kim, W., Kim, B.-Y., Cheong, S., Kim, Y.-J., and Son, W., 2015, Swell effect correction of subbottom profiler data with weak sea bottom signal. Geophys. and Geophys. Explor., 18(4), 181-196 (in Korean with English abstract). https://doi.org/10.7582/GGE.2015.18.4.181
  14. Lee, H.-Y., Koo, N.-H., Park, K.-P., Kim, J.-K., Kim, W.-S., and Kang, D.-H., 2002, Suppression of swell effect in 3.5 kHz subbottom profiler data, The Sea (Bada), 7(3), 95-99 (in Korean with English abstract).
  15. Lee, H.-Y., Koo, N.-H., Park, K.-P., Yoo, D.-G., Kang, D.-H., Kim, Y.-G., Seo, G.-S., Hwang, K.-D., Kim, J.-C., and Kim, J.-S., 2003, Resolution of shallow marine subsurface structure image associated with acquisition parameters of highresolution multi-channel seismic data, Geophysical Exploration (Mulli-Tamsa), 6(3), 126-133 (in Korean with English abstract).
  16. Lee, H.-Y., Park, K.-P., Koo, N.-H., Yoo, D.-G., Kang, D.-H., Kim, Y.-G., Hwang, K.-D., and Kim, J.-C., 2004, High-resolution shallow marine seismic surveys off Busan and Pohang, Korea using a small-scale multichannel system, J. Appl. Geophy., 56(1), 1-15. https://doi.org/10.1016/j.jappgeo.2004.03.003
  17. Lericolais, G., Allenou, J. P., Berne, S., and Morvan, P., 1990, A new system for acquisition and processing of very highresolution seismic reflection data, Geophysics, 55(8), 1036-1046. https://doi.org/10.1190/1.1442916
  18. Morend, D., Pugin, A., and Gorin, G. E., 2002, High-resolution seismic imaging of outcrop-scale channels and an incisedvalley system within the fluvial-dominated Lower Freshwater Molasse (Aquitanian, western Swiss Molasse Basin), Sediment. Geol., 149(4), 245-264. https://doi.org/10.1016/S0037-0738(01)00176-2
  19. Muller, C., Woelz, S., Ersoy, Y., Boyce, J., Jokisch, T., Wendt, G., and Rabbel, W., 2009, Ultra-high-resolution marine 2D-3D seismic investigation of the Liman Tepe/Karantina Island archaeological site (Urla/Turkey), J. Appl. Geophy., 68(1), 124-134. https://doi.org/10.1016/j.jappgeo.2008.10.015
  20. Nissen, S. E., Combes, J. M., and Nekut, A. G., 1999, Acquisition, processing, and analysis of shallow, high-resolution seismic data from the outer continental shelf and upper slope, offshore Louisiana, J. Sediment. Res., 69(2), 300-316. https://doi.org/10.2110/jsr.69.300
  21. Pugin, A., Pullan, S. E., Burns, R. A., Douma, M., and Good, R. L., 1999, High-resolution, multichannel, marine seismic surveying using a small airgun source, SAGEEP Meeting, Oakland CA, Extended Abstract, 255-264.
  22. Rodriguez, I. V., 2011, Automatic time-picking of microseismic data combining STA/LTA and the stationary discrete wavelet transform, CSEG Conference Abstracts.
  23. Sabbione, J. I., and Velis, D., 2010, Automatic first-breaks picking: New strategies and algorithms, Geophysics, 75(4), V67-V76. https://doi.org/10.1190/1.3463703
  24. Sabbione, J. I., and Velis, D. R., 2013, A robust method for microseismic event detection based on automatic phase pickers, J. Appl. Geophy., 99, 42-50. https://doi.org/10.1016/j.jappgeo.2013.07.011
  25. Song, J., Cao, X., Xu, W., and Yang, J., 2013, First arrival time auto-picking method based on multi-time windows energy ratio, Energy Science and Technology, 6(1), 79-89.
  26. Wong, J., Han, L., Bancroft, J., and Stewart, R., 2009, Automatic time-picking of first arrivals on noisy microseismic data, CSEG Conference Abstracts.