• Title/Summary/Keyword: Mineral admixture

Search Result 262, Processing Time 0.029 seconds

Spalling Properties of High Strength Concrete Mixed with Various Mineral Admixtures Subjected to Fire

  • Han, Cheon-Goo;Han, Min-Cheol;Heo, Young-Sun
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • This study investigates the spalling properties of high strength concrete designed with various types of mineral admixture and diverse content ratios of polypropylene (PP) fiber. Experimental factors considered in series I are four pozzolan types of mineral admixture and series II consists of three shrinkage reducing types of mineral admixture. PP fiber was added 0.05, 0.10 and 0.15vol. % in each mixture of series I and series II, so that totally 27 specimens including control concretes in each series were prepared. Test results showed that the increase of fiber content decreased the slump flow of fresh concrete and increased or decreased the air content depending on the declining ratio of slump flow. For the properties of compressive strength, all specimens were indicated at around 50 MPa, which is high strength range; especially all specimens in series II were 60 MPa. Fire test was conducted in standard heating curve of ISO 834 with ${\phi}100{\times}200\;mm$ size of cylinder moulds for 1 hour. The specimens incorporating silica fume exhibited severe spalling and most specimens without the silica fume could be protected from the spalling occurrence in only 0.05vol % of PP fiber content. This fire test results demonstrated that the spalling occurrence in high strength concrete was not only affected by concrete strength related to the porosity of microstructure but also, even more influenced by micro pore structure induced by the mineral admixtures.

Slump Loss of High Strength Concrete Containing Mineral Admixture and Gypsum (광물질 혼화재 및 석고를 사용한 고강도 콘크리트의 슬럼프 손실)

  • 김기형;최재진
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 1997
  • High strength concrete(HSC) using high range water reducing admixture (HRWR) has the defect which severe slump loss occurs according to elapsed time. For using HSC without any trouble, special caution and countermeasure against this problem are necessary. In this study, for minimizing the slump loss of HSC, mineral admixture( flyash, ground granulated blast furnace slag ) and gypsum were used experimentally. Flyash and ground granulated blast furnace slag are effective in reducing the slump loss of HSC. Especially, the slump loss of HSC containing mineral admixture and gypsum Is minimized by the aggregation inhibiting action of gypsum. Cement substituted with flyash 30% or ground granulated blast furnace slag 50% by weight are very effective in minimizing the slump loss.

  • PDF

Strength Property and Freeze-Thaw Resistance of High Strength Concrete using Expansive Admixture (팽창성 혼화재를 사용한 고강도콘크리트의 기초물성 및 동결융해저항특성)

  • Moon Han-Young;Kim Byoung-Kwon;Ha Ju-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.117-120
    • /
    • 2004
  • Up to now, many researches have been performed md verified that many properties of concrete can be improved by using mineral admixtures such as blast furnace slag, silica fume, and expansive admixture. But it is not clear whether there is any need for entraining air to make a high strength concrete using expansive admixture and mineral admixtures to insure enough freeze-thaw resistance. this paper presents the strength and durability properties of high strength concrete using expasive admixtures and industrial by-products. It was observed from the test results that very high strength concrete$(W/B=20\%)$ is not needed to be air entrained and high strength concrete$(W/B=30\%)$ using expansive admixture and mineral admixtures is needed to be entrained $2\~4\%$ air.

  • PDF

An Experimental Study on the Pozzolan Reaction of discarded Bentonite by Heat Treatment Condition - Focused on discarded Bentonite by cooling using of Water - (소성조건에 따른 폐 벤토나이트의 포졸란 반응성에 관한 실험적 연구 - 주수냉각을 중심으로 -)

  • 장진봉;정민수;김효열;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.85-90
    • /
    • 2002
  • This study aims to propose a fundamental report for pozzolan reaction of discarded Bentonite by heat-treatment as concrete mineral admixture. As discarded bentonite is clay mineral to contain a great quantity a lot of $SiO_2$ and $Al_{2}O_{3}$, it is anticipated to reveal pozzolan reaction ability by heat-treatment. To find out pozzolan reaction ability of discarded Bentonite slurry by heat-treatment, the experiment is excuted Phenolphtalein test, setting test, pH test and the analysis by X-ray diffractor. As a result of this study, discarded Bentonite slurry can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite slurry is superior to the situation of 50$0^{\circ}C$~$700^{\circ}C$, 60min.

  • PDF

Experimental Study on the Chloride Invasion Resistance Properties of Concrete Containing Mineral Admixtures (혼화재 혼입 콘크리트의 염화물 침투저항성에 관한 실험적 연구)

  • Yoo, Jae-Kang;Kim, Dong-Seuk;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.43-48
    • /
    • 2003
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for 3~4 replacement ratios under W/B ratios ranged from 0.40 to 0.55. For the electrical migration test, Tang and Nilsson's method was used to estimate the migration coefficient of chloride ion. As a results, the W/B ratios, kinds of admixture and replacement ratios, water curing periods had a great effect on the migration coefficient of chloride ion, and the optimal replacement ratios of admixture had a limitation for each admixtures. Also, the addition of mineral admixtures by mass(replacement of OPC) enhanced the resistance of the mixture to chloride penetration compared with the plain concrete. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures. The compressive strength was shown related to the migration coefficient of chloride ion, the compressive strength increased with the decreasing migration coefficient of chloride ion. Below the 50MPa, the variation of migration coefficient of concrete added mineral admixtures was bigger than plain concrete.

  • PDF

Experimental Study on the Chloride Invasion Resistance Properties of Concrete Containing Mineral Admixtures (혼화재 혼입 콘크리트의 염화물 침투저항성에 관한 실험적 연구)

  • 유재강;김동석;이상수
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.43-48
    • /
    • 2003
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzaolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for 3∼4 replacement ratios under W/B ratios ranged from 0.40 to 0.55. For the electrical migration test, Tang and Nilsson's method was used to estimate the migration coefficient of chloride ion. As a results, the W/B ratios, kinds of admixture and replacement ratios, water curing periods had a great effect on the migration coefficient of chloride ion, and the optimal replacement ratios of admixture had a limitation for each admixtures. Also, the addition of mineral admixtures by mass(replacement of OPC) enhanced the resistance of the mixture to chloride penetration compared with the plain concrete. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures. The compressive strength was shown related to the migration coefficient of chloride ion, the compressive strength increased with the decreasing migration coefficient of chloride ion. Below the 50MPa, the variation of migration coefficient of concrete added mineral admixtures was bigger than plain concrete.

  • PDF

Study on the Mineral Admixture Replacement Ratio for Field Application of Concrete with High Volume Mineral Admixture (혼화재 다량 치환 콘크리트의 현장 적용을 위한 혼화재 치환율에 관한 연구)

  • Lee, Jae-Hyun;Kim, Yong-Ro;Park, Jong-Ho;Jeong, Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • A variety of researches on the concrete with high volume mineral admixture have increased in recent years. In fact, it is very important to find appropriate replacement ratio of concrete with high volume mineral admixture in order to apply in the field. In this study, compressive strength according to fly ash and blast furnace slag replacement ratio as well as curing temperature was measured in the conditions of obtaining the same workability in order to examine the characteristics of concrete with high volume mineral admixture. In conclusion, it was found that the compressive strength at the age of 3 days decreased by 1.4MPa and the compressive strength at the age of 28 days decreased by 3.8MPa when the fly ash replacement ratio increased by 10%. Also, it was found that the compressive strength at the age of 3 days decreased by 1.0MPa and the compressive strength at the age of 28 days decreased by 0.9MPa when the blast furnace slag replacement ratio increased by 10%. Through the tests, we obtained the basic data for developing the future research on the concrete with high volume mineral admixture for housing structure.

High Volume Mineral Admixture Mortar According to Waste Refractory and Mixing Ratio (저미분 폐내화물 종류 및 혼입율 변화에 따른 혼화재 다량치환 모르타르의 공학적 특성)

  • Han, Sang-Yoon;Park, Do-Young;Cha, Cheon-Soo;Kim, Hyun-Woo;Yoon, Gi-Won;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.134-135
    • /
    • 2015
  • This study analysed compressive strength and the expansion characteristic to utilize a high volume mineral admixture mortar for a aerated mortar and a plastering mortar. In this experiment, the result shows that the compressive strength gain was satisfactory in case that WR was replaced within 5%. Also, the difference between WR1 and WR was insignificant. It shows that the drying shringkage properties at large was showed being satisfactory generally compared with Plain when WR was replaced, but the effect was not significant.

  • PDF

An Experimental Study on the Mechanical Properties of Recycled Aggregate Concrete Containing Admixtures (혼화재를 사용한 재생굵은골재 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 백철우;김호수;반성수;최성우;류득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.223-228
    • /
    • 2003
  • Recently, owing to the deterioration of reconstruction and the construction, much of the construction waste is discharged in our construction field, and the amount of construction waste is rapidly increased. These waste are raised to financial and environmental problems, so the method of reusing waste concretes has been studied and carried out many direction. Especially being want of resources, if waste concrete could be recycled as aggregates for concrete, it will contribute to solve the exhaustion of natural aggregate, in terms of saving resources and protecting environment. This study is that the mechanical properties of concrete with recycled coarse aggregate were investigated for types of mineral admixture and the substitution of recycled coarse aggregate. The result of this study, in case of using mineral admixture, the property of fresh concrete was rised. And the property of harden concrete for the substitution ratio of recycled coarse aggregate was decreased. But the property of concrete with mineral admixture was better than that of concrete used only cement.

  • PDF

Effect of mineral admixture on chemical shrinkage and autogenous shrinkage of cement paste (화학수축과 자기수축에 혼화재가 미치는 영향)

  • Park, Chung-Hoon;Choi, Hoon Jae;Kim, Baek-Joong;Yi, Chongku;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.156-157
    • /
    • 2013
  • As the chemical shrinkage and autogenous shrinkage of paste constitutes a large part of the shrinkage of high strength concrete, a good understanding of characteristics of chemical shrinkage and autogenous shrinkage is essential in order to understand chemical shrinkage and autogenous shrinkage of concrete. In this study, a preliminary study on effect of mineral admixture on chemical shrinkage and autogenous shrinkage of paste was compared.

  • PDF