• Title/Summary/Keyword: Mineral admixture

Search Result 263, Processing Time 0.018 seconds

A Study on the Estimation of Autogenous Shrinkage of High Strength Mortar incorporating Mineral Admixture by Equivalent Age Method (등가재령 방법에 의한 혼화재 치환 고강도 시멘트 모르타르의 자기수축 해석에 관한 연구)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2014
  • The objective of this study is to investigate an effect of curing temperature on autogenous shrinkage of high strength cement mortar with 0.15 of W/B incorporating fly ash and silica fume in terms of equivalent age. The contents of fly ash and silica fume are varied from 10% to 30%. Non linear regression model applying equivalent age was used to estimate the autogenous shrinkage evolution. To obtain apparent activation energy($E_a$), setting time method by Pinto and existing method were calculated and compared respectively. Test results showed that use of silica fume increased autogenous shrinkage while use of fly ash decreased it. It was also found that poor agreements were obtained when $E_a$ by setting time was applied. But, application of existing $E_a$ resulted in a good agreement between calculated autogenous shrinkage and measured one.

Permeability Evaluation of OPC and GGBFS Concrete with Cold Joint (콜드조인트를 가진 OPC 및 GGBFS 콘크리트의 투수성 평가)

  • Choi, Se-Jin;Kim, Seong-Jun;Moon, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.435-441
    • /
    • 2015
  • Concrete, as a porous media, has permeability and it is considered as a major parameter for durability evaluation. Cold joint caused by delayed placing of concrete accelerates water permeation and intrusion of harmful ions. In the paper, concrete specimens containing GGBFS (Ground Granulated Blast Furnace Slag) and OPC (Ordinary Portland Cement) are prepared with cold joint section, and water permeability and water flow at the age of 91 days are measured for 2 weeks. Sound concrete with GGBFS shows decreased permeability to 89% for sound concrete with OPC and 0.86 of decreasing ratio is evaluated in GGBFS concrete with cold joint. Through WPT (Water Penetration Test), the effects of mineral admixture and cold joint on water permeability are evaluated, and variation in water behavior via cold joint is analyzed through probabilistic method as well.

Durability Performance Evaluation On Early-Aged Concrete with Rice Husk Ash and Silica Fume (Rice Husk Ash와 실리카퓸을 혼입한 초기재령 콘크리트의 내구성능 평가)

  • Saraswathy, Velu;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.343-351
    • /
    • 2015
  • Currently, lots of researches have been performed for reducing cement usages due to increasing social/engineering problems caused by $CO_2$ emission. Supplementary cement materials like fly ash, slag, and silca fume are usually employed for cement replacement, and nowadays rice husk ash (RHA) is widely studied for enhancement of concrete performance as mineral admixture. In this paper, concrete samples with RHA and SF which is known for its engineering advantages are prepared and a resistance to chloride attack is evaluated in early-aged concrete. For the work, replacement ratios of 10~30% for RHA concrete and 2~8% for SF concrete are considered, and various durability tests such as density, void, sorptivity, current measurement, and chloride diffusion coefficient are performed including mechanical test like compressive and tensile strength. Replacement of RHA 10~15% shows better improvement of corrosion resistance and strength than that of SF 2~4% and normal concrete, which shows a strong applicability for utilization as construction materials.

Fundamental Study of Alkali Activated Cement Mortar for Evaluating Applicability of Partial-Depth Repair (도로포장 보수재 활용 가능성 평가를 위한 알칼리 활성 시멘트 모르타르 기초연구)

  • Jeon, Sung Il;An, Ji Hwan;Kwon, Soo Ahn;Yun, Kyung Ku
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • PURPOSES : This study is to evaluate the feasibility of using the alkali activated cement concrete for application of partial-depth repair in pavement. METHODS : This study analyzes the compressive strength of alkali activated cement mortar based on the changes in the amount/type/composition of binder(portland cement, fly ash, slag) and activator(NaOH, $Na_2SiO_3$, $Na_2CO_3$, $Na_2SO_4$). The mixture design is divided in case I of adding one kind-activator and case II of adding two kind-activators. RESULTS : The results of case I show that $Na_2SO_4$ based mixture has superior the long-term strength when compared to other mixtures, and that $Na_2CO_3$ based mixture has superior the early strength when compared to other mixtures. But the mixtures of case I is difficult to apply in the material for early-opening-to-traffic, because the strength of all mixtures isn't meet the criterion of traffic-opening. The results of case II show that NaOH-$Na_2SiO_3$ based mixtures has superior the early/long-term strength when compared to NaOH-$Na_2SiO_3$ based mixtures. In particular, the NaOH-$Na_2SiO_3$ based some mixtures turned out to pass the reference strength(1-day) of 21MPa as required for traffic-opening. CONCLUSIONS : With these results, it could be concluded that NaOH-$Na_2SiO_3$ based mixtures can be used as the material of pavement repair.

Evaluation on the Sulfate Attack Resistance of Cement Mortars with Different Exposure Conditions (노출조건에 따른 시멘트 모르타르의 황산염침식 저항성 평가)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.427-435
    • /
    • 2012
  • In order to evaluate the effects of exposure conditions on the resistance to sulfate attack of normal and blended cement mortars, several mechanical characteristics of the mortars such as expansion, strength and bulk density were regularly monitored for 52 cycles under sodium sulfate attack. The mortar specimens were exposed to 3 different types of exposure conditions; 1) continuous full immersion(Exposure A), continuous half-immersion(Exposure B) and cyclic wetting-drying(Exposure C). Experimental results indicated that the maximum deterioration was noted in OPC mortar specimens subjected to Exposure B, showing the wide cracks in the portions where attacking solution is adjacent to air. Additionally, the beneficial effect of ground granulated blast-furnace slag and silica fume was clearly observed showing a superior resistance against sodium sulfate attack, because of its lower permeability and densified structure. Thus, it is suggested that when concrete made with normal cement is exposed to sulfate environment, proper considerations on the exposure conditions should be taken.

Long-Termed Behavior and Durability of Foam-Mixed Concrete Containing Porous Aggregates (다공성 골재를 함유한 기포혼합콘크리트의 장기거동 및 내구특성)

  • Kim, Sang Chel;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.113-123
    • /
    • 2012
  • The technology developed for the decrease of applying loads and self-weight of a structure is to improve conventional Foam Cement Banking Method (FCB) by applying mixed slurry of bottom ash, cement and foams. Since the foam-mixed concrete, which is a major material of the Bottom ash-mixed Light weight concrete Banking method (BLB) developed, contains mineral admixture such as cement, the behavior shows time-dependent deformation and deterioration of durability due to environmental exposure. Thus, this study is subject to figure out the characteristics of long-termed behavior and durability of the developed method by carrying out experiments for schemed parameters, which are considered to be factors affecting mainly on concrete's characteristics from mechanical analysis. As results of tests, it was found that the developed concrete offers higher resistance than conventional foamed concrete in terms of long-termed behaviors associated with drying shrinkage and creep, and durability problems of freeze-thaw and carbonation processes, especially with addition of bottom ash.

Evaluation of Chloride Penetration in Concrete with Ground Granulated Blast Furnace Slag considering Fineness and Replacement Ratio (고로슬래그 미분말 콘크리트의 분말도 및 치환율에 따른 염해 저항성 평가)

  • Lee, Hyun-Ho;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.26-34
    • /
    • 2013
  • Durability performance in RC structures varies significantly with changes in cover depth and mix proportions. GGBFS (Ground Granulated Blast Furnace Slag) is very effective mineral admixture and widely used for an improved resistance to chloride attack. In this paper, characteristics such as porosity, compressive strength, and diffusion coefficient are evaluated in GGBFS concrete with 30~70% of replacement ratio and $4,000{\sim}8,000cm^2/g$ of fineness. Through the tests, more dense pore structure, higher compressive strength, and lower diffusion coefficient are obtained in GGBFS concrete, which are evaluated to be more dependent on replacement ratio than fineness. With increasing curing period from 3 to 91 days, porosity decreases to 77.47% and strength increases to 373% in GGBFS concrete. Chloride diffusion coefficient in GGBFS concrete decreases to 64.4% compared with that in OPC concrete, which shows significant improvement of durability performance.

Compressive Strength and Resistance to Freezing and Thawing of Recycled Aggregate Concrete Containing Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 혼입한 순환골재 콘크리트의 압축강도 및 동결융해 저항성)

  • Bae, Suho;Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.469-475
    • /
    • 2013
  • The purpose of this experimental research is to estimate compressive strength and resistance to freezing and thawing of recycled aggregate concrete containing ground granulated blast furnace slag. For this purpose, concrete specimens according to substitution ratio of recycled aggregate were made for different replacement ratio of ground granulated blast furnace slag(GGBFS), and then compressive strength and resistance to freezing and thawing were evaluated for those. It was observed from the test results that compressive strength at 28 days of recycled aggregate concrete containing GGBFS of 20% was much more excellent than plain concrete and when air content of concrete was maintained 4 to 6%, influence of substitution ratio of recycled aggregate and replacement ratio of GGBFS on resistance to freezing and thawing was little up to 300 cycles of freezing and thawing.

A Fundamental Study for Beneficial Use of Dredged Material as a Concrete Admixture (항만준설토의 콘크리트 혼합재로의 활용을 위한 기초적 연구)

  • Oh, Hong-Seob;Oh, Kwang-Jin;Lee, Ju-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.132-141
    • /
    • 2010
  • Recently dredged material generation has a tendency to increase since harbor construction are under progress. In this study, an experiment had been carried out which replacement of dredged material of Busan and Ulsan port as concrete mixing material. For this experiment, physical and chemical test of dredged material was carried out, and compressive strength test of mortal specimen with dredged material in scale, as aggregate replacement, was carried out. Compressive strength of Busan and Ulsan was both increased when the ratio of mixing materials was 10%. Compressive strength of Dredged material from Busan with about 70% of mineral silt showed increse when the ratio of aggregate replacement in 30%. In addition, in the result of the ICP test, both dredged materials satisfied the waste's marine discharge treatment and soil contamination concern and measures criterion on that using dredged material as a concrete material can influence on application of concrete positively.

The Effect of Mixing Ratio of Blast Furnace Slag and Fly Ash on Material Properties of 80MPa High Strength Concrete with Ternary Cement (고로슬래그와 플라이애시 대체율이 80MPa 3성분계 고강도콘크리트의 재료물성에 미치는 영향)

  • Lee, Bum-Sik;Jun, Myoung-Hoon;Lee, Do-Heun
    • Land and Housing Review
    • /
    • v.3 no.3
    • /
    • pp.287-297
    • /
    • 2012
  • To develop 80MPa-high strength concrete with ternary cement used in OPC, blast-furnance slag, and fly ash, mixing ratio of blast-furnace slag and fly ash was evaluated in material characteristics before and after hardening of the high strength concrete. According to the evaluated results of material characteristics before and after hardening of the high strength concrete, the flowability and long-term compressive strength increase up to 30% mixing ratio of blast-furnace slag and fly ash. Also, it is superior to characteristics of length change and neutralization due to the use of mineral admixture when compared in test sample mixed with OPC. The evaluated results show that material characteristics of the high strength concrete was the most outstanding performance at blast-furnace slag of 25% and fly ash of 15%. The result of this study will be useful for the development of high strength concrete as a substitute of costly silica fume in the near future.