• 제목/요약/키워드: Mineral Trioxide Aggregate (MTA)

검색결과 103건 처리시간 0.029초

Type III 치내치의 보존적 근관치료 : 증례보고 (Conservative Endodontic Treatment of Type III Dens Invaginatus : Case Report)

  • 조완선;이난영;이상호
    • 대한소아치과학회지
    • /
    • 제41권2호
    • /
    • pp.174-179
    • /
    • 2014
  • 치내치란 치아 조직의 석회화가 일어나기 이전에 법랑기가 치유두 내로 함입되어 나타나는 발육성 이상을 말한다. 치내치는 임상적, 방사선학적으로 다양한 변이를 나타내며, 치내치의 여러 분류법 중 Oehlers(1957)가 제안한 분류법이 가장 널리 이용되고 있다. 치수는 건강한 채로 남아 있으나 함입부가 치주염과 연관된 Type III 병소를 치료하는데 다양한 술식들이 설명되어져왔다. 가장 우선시 되어야 하는 목표는 가능하다면 치수를 건전하게 보존하는 것이며, 치수질환의 명백한 증거가 없다면, 함입부를 치근과 별개로 치료하는 보존적인 접근법이 필요하다. 그러나, Type III 치내치의 근관치료는 근관과 함입의 충분한 잔사제거, 재현가능한 근관장의 조절, 일관된 충전등을 충분히 달성하기 어렵다는 문제점이 있다. 본 증례는 치근단 병소를 보이는 Type III 치내치의 치료에 함입부에만 제한된 보존적 근관치료 및 Mineral Trioxide Aggregate(MTA)를 이용한 폐쇄를 통해 양호한 결과를 얻었기에 보고하는 바이다.

Observation of an extracted premolar 2.5 years after mineral trioxide aggregate apexification using micro-computed tomography

  • Lee, Gayeon;Chung, Chooryung;Kim, Sunil;Shin, Su-Jung
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.4.1-4.6
    • /
    • 2020
  • Although numerous studies have been conducted on apexification using mineral trioxide aggregate (MTA), direct observation of extracted human teeth after the procedure has been rarely reported. This case report describes a mandibular premolar treated 2.5 years ago and extracted recently for orthodontic treatment. The tubercle of the right mandibular premolar of a 12-year-old boy with dens evaginatus was fractured and the pulp was exposed. The tooth was diagnosed with pulp necrosis and asymptomatic periapical abscess. During the first visit, copious irrigation was performed with 2.5% sodium hypochlorite. Calcium hydroxide paste was placed as an intracanal medicament. The sinus tract had disappeared at the second visit after 3 weeks. MTA was applied on to the bleeding point as a 4-mm-thick layer, followed by a 3-mm-thick gutta-percha filling and resin core build-up. After 2.5 years, the tooth and three other premolars were extracted for orthodontic treatment. The right and left mandibular premolars were scanned with micro-computed tomography to determine the root shape and canal anatomy. Irregular root growth was observed and the root outline of the right mandibular premolar differed from that of the contralateral tooth. Apexification with MTA leads to the formation of roots with irregular morphology, without any pulpal space.

MTA의 물리화학적 성질 및 생체친화성에 대한 연구 (REVIEW ARTICLE - Chemical and physical properties and biocompatibility of MTA)

  • 장석우;오태석;유현미;박동성;배광식;금기연
    • 대한치과의사협회지
    • /
    • 제50권3호
    • /
    • pp.148-154
    • /
    • 2012
  • Mineral trioxide aggregate (MTA) is mainly composed of lime and silica. Its four major phases are tricalcium silicate, dicalcium silicate, tricalcium aluminate, and tetracaclcium aluminoferrite. MTA has relatively long initial setting time (2h 45m) and various additives can be added to reduce setting time. Compressive strength of MTA increases with time and reaches 100 MPa after 28 days. MTA has high pH of 9-12.5 because of the formation of calcium hydroxide during its hydration reaction. MTA has superior sealing ability to amalgam and IRM when it is used in perforation repair or root end filling. MTA is safe in cytotoxicity and genotoxicity and have potential to promote pulpal and periapical hard tissue formation.

Chemical Constitution, Morphological Characteristics, and Biological Properties of ProRoot Mineral Trioxide Aggregate and Ortho Mineral Trioxide Aggregate

  • Kum, Kee Yeon;Yoo, Yeon Jee;Chang, Seok Woo
    • Journal of Korean Dental Science
    • /
    • 제6권2호
    • /
    • pp.41-49
    • /
    • 2013
  • Purpose: This study sought to compare the elemental constitution, morphological characteristics, particle size distribution, biocompatibility, and mineralization potential of Ortho MTA (OMTA) and ProRoot MTA (PMTA). Materials and Methods: OMTA and PMTA were compared using energy-dispersive spectrometry, particle size analysis, and scanning electron microscopy. The biocompatibility and mineralization-related gene expression (osteonectin and osteopontin) of both MTAs were also compared using methylthiazol tetrazolium assay and reverse transcription-polymerization chain reaction analysis, respectively. The results were analyzed by Kruskal-Wallis test with Bonferroni correction. P-value of <0.05 was considered significant. Result: The morphology of OMTA powders was similar to that of PMTA. The constituent elements of both MTAs were calcium, silicon, and aluminum. The mean particle sizes of OMTA and PMTA were 4.60 and 3.34 mm, respectively. Both MTAs had equally favorable in vitro biocompatibility and affected the messenger RNA expression of osteonectin and osteopontin. Conclusion: Within the limitations of this study, OMTA could be a promising biomaterial in clinical endodontics.

The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material

  • Akbulut, Makbule Bilge;Bozkurt, Durmus Alperen;Terlemez, Arslan;Akman, Melek
    • Restorative Dentistry and Endodontics
    • /
    • 제44권1호
    • /
    • pp.5.1-5.9
    • /
    • 2019
  • Objectives: The aim of this in vitro study was to evaluate the push-out bond strength of a novel calcium silicate-based root repair material-BIOfactor MTA to root canal dentin in comparison with white MTA-Angelus (Angelus) and Biodentine (Septodont). Materials and Methods: The coronal parts of 12 central incisors were removed and the roots were embedded in acrylic resin blocks. Midroot dentin of each sample was horizontally sectioned into 1.1 mm slices and 3 slices were obtained from each root. Three canal-like standardized holes having 1 mm in diameter were created parallel to the root canal on each dentin slice with a diamond bur. The holes were filled with MTA-Angelus, Biodentine, or BIOfactor MTA. Wet gauze was placed over the specimens and samples were stored in an incubator at $37^{\circ}C$ for 7 days to allow complete setting. Then samples were subjected to the push-out test method using a universal test machine with the loading speed of 1 mm/min. Data was statistically analyzed using Friedman test and post hoc Wilcoxon signed rank test with Bonferroni correction. Results: There were no significant differences among the push-out bond strength values of MTA-Angelus, Biodentine, and BIOfactor MTA (p > 0.017). Most of the specimens exhibited cohesive failure in all groups, with the highest rate found in Biodentine group. Conclusions: Based on the results of this study, MTA-Angelus, Biodentine, and BIOfactor MTA showed similar resistances to the push-out testing.

Surgical management of a failed internal root resorption treatment: a histological and clinical

  • Asgary, Saeed;Eghbal, Mohammad Jafar;Mehrdad, Leili;Kheirieh, Sanam;Nosrat, Ali
    • Restorative Dentistry and Endodontics
    • /
    • 제39권2호
    • /
    • pp.137-142
    • /
    • 2014
  • This article presents the successful surgical management of a failed mineral trioxide aggregate (MTA) orthograde obturation of a tooth with a history of impact trauma and perforated internal root resorption. A symptomatic maxillary lateral incisor with a history of perforation due to internal root resorption and nonsurgical repair using MTA was referred. Unintentional overfill of the defect with MTA had occurred 4 yr before the initial visit. The excess MTA had since disappeared, and a radiolucent lesion adjacent to the perforation site was evident radiographically. Surgical endodontic retreatment was performed using calcium enriched mixture (CEM) cement as a repair material. Histological examination of the lesion revealed granulation tissue with chronic inflammation, and small fragments of MTA encapsulated within fibroconnective tissue. At the one and two year follow up exams, all signs and symptoms of disease had resolved and the tooth was functional. Complete radiographic healing of the lesion was observed two years after the initial visit. This case report illustrates how the selection of an appropriate approach to treatment of a perforation can affect the long term prognosis of a tooth. In addition, extrusion of MTA into a periradicular lesion should be avoided.

난각으로부터 합성된 초미립 CaO 분말을 이용한 C3S, C2S, C3A 분말 합성 및 혼합 경화체에 미치는 C3A 함량의 영향 (Synthesis of C3S, C2S, C3A Powders using Ultra-fine Calcium Oxide Powder Synthesized from Eggshell and Effect of C3A Content on Hardened Mixed Aggregates)

  • 공헌;권기범;박상진;노효섭;이상진
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.493-501
    • /
    • 2019
  • In this work, ultra-fine calcium oxide (CaO) powder derived from eggshells is used as the starting material to synthesize mineral trioxide aggregate (MTA). The prepared CaO powder is confirmed to have an average particle size of 500 nm. MTAs are synthesized with three types of fine CaO-based powders, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). The synthesis behavior of C3S, C2S and C3A with ultra-fine CaO powder and the effects of C3A content and curing time on the properties of MTA are investigated. The characteristics of the synthesized MTA powders are examined by X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), and a universal testing machine (UTM). The microstructure and compressive strength characteristics of the synthesized MTA powders are strongly dependent on the C3A wt.% and curing time. Furthermore, MTA with 5 wt.% C3A is found to increase the compressive strength and shorten the curing time.

Effect of Mineral Trioxide Aggregate and Calcium Hydroxide on Reparative Dentin Formation in Rats

  • Ra, Ji-Young;Lee, Wan;Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • 제37권2호
    • /
    • pp.77-83
    • /
    • 2012
  • We investigated the pulpal response to direct pulp capping in rat molar teeth using mineral trioxide aggregate (MTA) and calcium hydroxide (CH). A palatal cavity was prepared in rat maxillary molar teeth. Either MTA or CH was placed on the exposed pulp and all cavities were restored with composite. Rats were sacrificed for histological evaluation after 12 hours and at 2, 7, 14 and 21 days. In both the MTA and CH groups, reparative dentin formation was clearly observed on histology after 14 days. The MTA-capped pulps were found to be mostly free from inflammation, and hard tissue of a tubular consistent barrier was observed. In contrast, in CH-capped teeth, excessive formation of reparative dentin toward residual pulp was evident. The pulpal cell response beneath the reparative dentin layer was examined by immunofluorescence using antibodies against DSP. After 2 days, a few DSP immunopositive cells, most of which showed a cuboidal shape, appeared beneath the predentin layer. At 7 days, DSP-immunopositive cells with columnar odontoblast-like cells were seen beneath the newly formed hard tissues. At 14 and 21 days, DSP was more abundant in the vicinity of the odontoblastic process along the dentinal tubules than in the mineralized reparative dentin. The CH group showed strong expression patterns in terms of DSP immunoreactivity. Our results thus indicate that MTA may be a more effective pulp capping material as it induces the differentiation of odontoblast-like cells and the formation of reparative dentin without the loss of residual pulp functions.

Push-out bond strength and marginal adaptation of apical plugs with bioactive endodontic cements in simulated immature teeth

  • Maria Aparecida Barbosa de Sa;Eduardo Nunes ;Alberto Nogueira da Gama Antunes ;Manoel Brito Junior ;Martinho Campolina Rebello Horta ;Rodrigo Rodrigues Amaral;Stephen Cohen ;Frank Ferreira Silveira
    • Restorative Dentistry and Endodontics
    • /
    • 제46권4호
    • /
    • pp.53.1-53.11
    • /
    • 2021
  • Objectives: This study evaluates the bond strength and marginal adaptation of mineral trioxide aggregate (MTA) Repair HP and Biodentine used as apical plugs; MTA was used as reference material for comparison. Materials and Methods: A total of 30 single-rooted teeth with standardized, artificially created open apices were randomly divided into 3 groups (n = 10 per group), according to the material used to form 6-mm-thick apical plugs: group 1 (MTA Repair HP); group 2 (Biodentine); and group 3 (white MTA). Subsequently, the specimens were transversely sectioned to obtain 2 (cervical and apical) 2.5-mm-thick slices per root. Epoxy resin replicas were observed under a scanning electron microscope to measure the gap size at the material/dentin interface (the largest and smaller gaps were recorded for each replica). The bond strength of the investigated materials to dentin was determined using the push-out test. The variable bond strengths and gap sizes were evaluated independently at the apical and cervical root dentin slices. Data were analyzed using descriptive and analytic statistics. Results: The comparison between the groups regarding the variables' bond strengths and gap sizes showed no statistical difference (p > 0.05) except for a single difference in the smallest gap at the cervical root dentin slice, which was higher in group 3 than in group 1 (p < 0.05). Conclusions: The bond strength and marginal adaptation to root canal walls of MTA HP and Biodentine cement were comparable to white MTA.

X-Ray Diffraction Analysis of Various Calcium Silicate-Based Materials

  • An, So-Youn;Lee, Myung-Jin;Shim, Youn-Soo
    • 치위생과학회지
    • /
    • 제22권3호
    • /
    • pp.191-198
    • /
    • 2022
  • Background: The purpose of this study was to evaluate the composition of the crystal phases of various calcium silicate-based materials (CSMs): ProRoot white MTA (mineral trioxide aggregate) (WMTA), Ortho MTA (OM), Endocem MTA (EM), Retro MTA (RM), Endocem Zr (EN-Z), BiodentineTM (BD), EZ-sealTM (EZ), and OrthoMTA III (OM3). Methods: In a sample holder, 5 g of the powder sample was placed and the top surface of the material was packed flat using a sterilized glass slide. The prepared slides were mounted on an X-ray diffraction (XRD) instrument (D8 Advance; Bruker AXS GmbH, Germany). The X-ray beam 2θ angle range was set at 10~90° and scanned at 1.2° per minute. The Cu X-ray source set to operate at 40 kV and 40 mA in the continuous mode. The peaks in the diffraction pattern of each sample were analyzed using the software Diffrac (version 2.1). Then, the peaks were compared and matched with those of standard materials in the corresponding Powder Diffraction File (PDF-2, JCPDS International Center for Diffraction Data). A powder samples of the materials were analyzed using XRD and the peaks in diffraction pattern were compared to the Powder Diffraction File data. Results: Eight CSMs showed a similar diffraction pattern because their main component was calcium silicate. Eight CSMs showed similar diffraction peaks because calcium silicate was their main component. Two components were observed to have been added as radiopacifiers: bismuth oxide was detected in WMTA, OM, and EM while zirconium oxide was detected in RM, EN-Z, BD, EZ, and OM3. Unusual patterns were detected for the new material, OM3, which had strong peaks at low angles. Conclusion: It was caused by the presence of Brushite, which is believed to have resulted in crystal growth in a particular direction for a specific purpose.